Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Estimation of predictive uncertainties in flood wave propagation in a river channel using adjoint sensitivity analysis

Elhanafy, H. and Copeland, G.J.M. and Gejadze, I.Y. (2008) Estimation of predictive uncertainties in flood wave propagation in a river channel using adjoint sensitivity analysis. International Journal of Numerical Methods in Fluids, 56 (8). pp. 1201-1207. ISSN 0271-2091

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper applies adjoint sensitivity analysis to flash flood wave propagation in a river channel. A numerical model, based on the St-Venant equations and the corresponding adjoint equations, determines the sensitivities of predicted water levels to uncertainties in key controls such as inflow hydrograph, channel topography, frictional resistance and infiltration rate. Sensitivities are calculated in terms of a measuring function that quantifies water levels greater than certain safe threshold levels along the channel. The adjoint model has been verified by means of an identical twin experiment. The method is applied to a simulated flash flood in a river channel. The sensitivities to key controls are evaluated and ranked and the effects of individual and combined uncertainties on the predicted flood impact are also quantified.