Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Optical properties of LiNbO3 : Cr crystals co-doped with Germanium oxide

Camarillo, E. and Murrieta, H. and Hernandez, J.M. and Zoilo, R. and Flores, M.C. and Han, T.P.J. and Jaque, F. (2008) Optical properties of LiNbO3 : Cr crystals co-doped with Germanium oxide. Journal of Luminescence, 128 (5-6). pp. 747-750. ISSN 0022-2313

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Lithium niobate (LiNbO3) crystals doped with chromium ions show a clear green colouring reflecting the absorption profile of the dominating [Cr](Li) defect centres. A significant change in its colouration takes place when it is co-doped with other valency impurities such as Mg2+, Sc3+ and W6+, above a certain threshold concentration. This concentration singularity has been attributed to the formation of [Cr](Nb) centres coexisting with the [Cr](Li) centres. In this work, we extended the investigation on the effect of co-dopant ions in Cr:LiNbO3 to tetravalent cation such as GeO2. A singularity in the relative intensity of the (4)A(2)-> T-4(1) and (4)A(2)-> T-4(2) absorption band was observed for a concentration of similar to 1.5 mol%, compared with 4.5 mol% for Mg2+. The photoluminescence emission spectra also reveal a new emission band, at a lower energy than the [Cr](Li) centre, corresponding to this threshold concentration. A charge compensation model is proposed to explain the role of cation impurities and results are compared with those of other valence impurities.