Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Endothelial cell response to narrow diameter nylon tubes exhibiting internal nanotopography

Berry, C. and McCloy, D. and Affrossman, S. (2008) Endothelial cell response to narrow diameter nylon tubes exhibiting internal nanotopography. Current Nanoscience, 4 (2). pp. 219-223. ISSN 1573-4137

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The use of three dimensional scaffolds in tissue engineering is well reported, as is the exploitation of nanotopography to influence cell response. To date, due to fabrication limitations, the combination of these two has experienced limited research. This paper reports on the use of polymer demixing, a rapid and cheap nanofabrication method, to create a defined nanotopography in 0.5mm diameter nylon tubes. Results indicate that the resultant nano-island topography reduced endothelial cell adhesion and spreading, strongly influenced cell morphology, and appeared to increase endocytic activity. The use of such constructs that boast topographical cues have great potential in tissue and cell engineering studies for future clinical use, in particular with respect to conduits and stents.