Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Influence of tower shadow and wind turbulence on the performance of power system stabilizers for DFIG-based wind farms

Hughes, F.M. and Anaya-Lara, O. and Ramtharan, G. and Jenkins, N. and Strbac, G. (2008) Influence of tower shadow and wind turbulence on the performance of power system stabilizers for DFIG-based wind farms. IEEE Transactions on Energy Conversion, 23 (2). pp. 519-528. ISSN 0885-8969

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The aim of the paper is to demonstrate the way in which mechanical power variations, due to tower shadow and wind turbulence, influence control performance of power system stabilizer (PSS) loops for doubly-fed induction generators (DFIGs). The PSS auxiliary loops are applied on a specific DFIG control scheme, the flux magnitude and angle controller (FMAC). However, since the PSS signal is applied at the output of the basic controller, the PSS performance characteristics displayed are deemed typical for DFIG control schemes in general. The relative capabilities of PSS controllers based on stator power, rotor speed, and network frequency, when the DFIG turbine is subjected to aerodynamic torque variations, are investigated via simulation studies. A two-generator aggregate model of a wind farm is introduced, which enables the influence of tower shadow and wind turbulence on both an individual turbine and on the overall wind farm itself to be assessed.