Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Optimal long-term design, rehabilitation and upgrading of water distribution networks

Tanyimboh, T. and Kalungi, P. (2008) Optimal long-term design, rehabilitation and upgrading of water distribution networks. Engineering Optimization, 40 (7). pp. 637-654. ISSN 0305-215X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Given a limited budget, the choice of the best water distribution network upgrading strategy is a complex optimization problem. A model for the optimal long-term design and upgrading of new and existing water distribution networks is presented. A key strength of the methodology is the use of maximum entropy flows, which reduces the size of the problem and enables the application of linear programming for pipe size optimization. It also ensures the reliability level is high. The capital and maintenance costs and hydraulic performance are considered simultaneously for a predefined design horizon. The timing of upgrading over the entire planning horizon is obtained by dynamic programming. The deterioration over time of the structural integrity and hydraulic capacity of every pipe are explicitly considered. The upgrading options considered include pipe paralleling and replacement. The effectiveness of the model is demonstrated using the water supply network of Wobulenzi town in Uganda.