Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

On the quantum core of an optical vortex

Barnett, S.M. (2008) On the quantum core of an optical vortex. Journal of Modern Optics, 55 (14). pp. 2279-2292. ISSN 0950–0340

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

An optical vortex is a line around which the phase increases by an integer multiple of 2π. It follows that the phase on the line itself is undefined and hence the field must have zero amplitude there. Berry and Dennis have suggested that this line of darkness is smoothed by a 'quantum core' with a radius proportional to 1/2 and have illustrated this idea by considering the competition between stimulated and spontaneous emission by an excited atom placed in the vicinity of the vortex. We show here that a similar phenomenon may be seen in absorption when the quantum state of motion of the absorbing atom is taken into consideration. There is, however, an underlying quantum singularity in which the absorption events for an atom centred on the vortex core can take place only if accompanied by a transfer of angular momentum to the atomic motion. The nature of this singularity relies on the evolution of an entangled state between the electronic and motional degrees of freedom of the trapped atom. We comment briefly on the effects of field quantisation on this quantum core of the optical vortex.

Item type: Article
ID code: 19584
Keywords: optical vortex, optical angular momentum, quantum optics, ion trapping, Optics. Light, Atomic and Molecular Physics, and Optics
Subjects: Science > Physics > Optics. Light
Department: Faculty of Science > Physics
Related URLs:
    Depositing user: Strathprints Administrator
    Date Deposited: 02 Jun 2010 10:00
    Last modified: 05 Sep 2014 01:46
    URI: http://strathprints.strath.ac.uk/id/eprint/19584

    Actions (login required)

    View Item