Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

The mac method

McKee, S. and Tome, M.F. and Ferreira, V.G. and Cuminato, J.A. and Castelo, A. and Sousa, F.S. and Mangiavacchi, N. (2008) The mac method. Computers and Fluids, 37 (8). pp. 907-930. ISSN 0045-7930

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

In this article recent advances in the Marker and Cell (MAC) method will be reviewed. The MAC technique dates back to the early 1960s at the Los Alamos Laboratories and this article starts with a historical review, and then a brief discussion of related techniques. Improvements since the early days of MAC (and the Simplified MAC - SMAC) include automatic time-stepping, the use of the conjugate gradient method to solve the Poisson equation for the corrected velocity potential, greater efficiency through stripping out the virtual particles (markers) other than those near the free surface, and more accurate approximations of the free surface boundary conditions, the addition of bounded high accuracy upwinding for the convected terms (thereby being able to solve higher Reynolds number flows), and a (dynamics) flow visualization facility. More recently, effective techniques for surface and interfacial flows and, in particular, for accurately tracking the associated surface(s)/interface(s) including moving contact angles have been developed. This article will concentrate principally on a three-dimensional version of the SMAC method. It will eschew both code verification and model validation; instead it will emphasize the applications that the MAC method can solve, from multiphase flows to rheology.