Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Fragmentation of carbohydrate anomeric alkoxyl radicals: new synthesis of chiral 1-fluoro-1-halo-1-iodoalditols

Francisco, C.G. and Gonzalez, C.C. and Kennedy, A.R. and Paz, N.R. and Suarez, E. (2008) Fragmentation of carbohydrate anomeric alkoxyl radicals: new synthesis of chiral 1-fluoro-1-halo-1-iodoalditols. Chemistry - A European Journal, 14 (22). pp. 6704-6712. ISSN 0947-6539

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Anew general methodology for the synthesis of 1,1,1-trihaloalditols by starting from 1,5-anhydro-2-deoxyhex- 1-enitol derivatives (glycals) is described. The halogens are introduced sequentially in each of the three different steps of the process. The fluorine is introduced in the first step by electrophilic fluorination of the starting glycal; next, hydroxyhalogenation of the resulting vinyl fluoride allows the addition of any halogen (F, Cl, Br or I) at will, and finally, an iodine atom is inserted through an alkoxyl radical fragmentation reaction. This methodology allows the preparation of diverse types of 1,1,1-trihalogenated compounds (R CF2I, RCFI2, RCFClI and R CFBrI) under mild conditions compatible with sensitive substituents. In some cases, the diastereomeric mixtures generated from RCFClI and RCFBrI can be chromatographically separated, and their configuration determined by X-ray crystallographic analysis. The synthetic usefulness of these compounds has been preliminarily assessed by examining the reactivity of the fluorinated radical generated by rupture of the CI bond.