Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Self-localized structures in vertical-cavity surface-emitting lasers with external feedback

Paulau, P.V. and Gomila, D. and Ackemann, T. and Loiko, N.A. and Firth, W.J. (2008) Self-localized structures in vertical-cavity surface-emitting lasers with external feedback. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 78 (1). 016212-016212. ISSN 1063-651X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In this paper, we analyze a model of broad area vertical-cavity surface-emitting lasers subjected to frequency-selective optical feedback. In particular, we analyze the spatio-temporal regimes arising above threshold and the existence and dynamical properties of cavity solitons. We build the bifurcation diagram of stationary self-localized states, finding that branches of cavity solitons emerge from the degenerate Hopf bifurcations marking the homogeneous solutions with maximal and minimal gain. These branches collide in a saddle-node bifurcation, defining a maximum pump current for soliton existence that lies below the threshold of the laser without feedback. The properties of these cavity solitons are in good agreement with those observed in recent experiments.