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Abstract The Program Dependence Graph was

introduced by Ottenstein and Ottenstein in 1984

[14]. It was suggested to be a suitable internal pro-

gram representation for monolithic programs, for

the purpose of carrying out certain software engi-

neering operations such as slicing and the compu-

tation of program metrics. Since then, Horwitz et

al. have introduced the multi-procedural equiva-

lent System Dependence Graph [9]. Many authors

have proposed object-oriented dependence graph

construction approaches [11, 10, 20, 12]. Every ap-

proach provides its own benefits, some of which are

language specific. This paper is based on Java and

combines the most important benefits from a range

of approaches. The result is a Java System Depen-

dence Graph, which summarises the key benefits of-

fered by different approaches and adapts them (if

necessary) to the Java language.

1 Introduction

Analysing and representing software in terms of

its internal dependencies is important for a vari-

ety of software engineering applications. These in-

clude operations such as slicing and the computa-

tion of program metrics. The program dependence

graph represents these dependencies, where vertices

are program elements and edges represent depen-

dencies between them [14]. There have been sev-

eral approaches to building graphs for different pro-

gramming paradigms and languages. The Java Sys-

tem Dependence Graph (JSDG) summarises aspects

of object-oriented programming that previous work

has focused on and presents a practical approach to

its construction.

Ottenstein and Ottenstein first suggested that de-

pendence graphs could be used for software engi-

neering operations in 1984 [14]. They proposed a

graph which was capable of representing a program

consisting of a single block of sequentially executed

code. To enable the application of these operations

to multi-procedural programs, Horwitz et al. intro-

duced the System Dependence Graph, which repre-

sents every procedure as an individual dependence

graph. The procedure dependence graphs are linked

to a central dependence graph, which represents the

main program [9].

There have been several proposed modifications

to the system dependence graph, attempting to en-

able the representation of object-oriented programs.

Such approaches must be able to cope with prop-

erties such as polymorphism, dynamic binding and

inheritance. Larsen and Harrold proposed a graph

capable of representing these features for C++ pro-

grams [11]. This was modified by Kovács et al.

and Zhao, to enable the representation of Java-

specific features such as interfaces, packages and

single inheritance [10, 20]. Liang and Harrold also

augmented Larsen and Harrold’s graph to distin-

guish data members in parameter objects, eliminat-

ing superfluous dependencies at callsites and hence

increasing the accuracy of graph-based operations

[12].

This paper presents a Java-based graph that en-

capsulates the benefits offered by the approaches

mentioned above. It presents the graph construc-
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2 THE JSDG

tion from a practical perspective and provides an

example which demonstrates that the approach pre-

sented is viable. Although dependence analysis is

an established area, the JSDG enables static anal-

ysis to be carried out on a graph which will pro-

duce more accurate results than other static Java de-

pendence graphs, because it can represent abstract

classes which need not necessarily be interfaces and

it can distinguish data members in parameter ob-

jects.

The next section introduces the JSDG by pre-

senting its individual components. Examples of var-

ious concepts which are included in the graph are

taken from a single larger program which is given

in the appendix. This is useful, because it puts the

various individual illustrations into context. Section

three analyses the graph from a more practical per-

spective. It identifies the steps needed for the con-

struction of the graph. Section four analyses poten-

tial research areas that could benefit from the graph

and introduces some practical problems that could

arise if the represented program contains features

such as threads and exceptions. Section five pro-

vides a conclusion and summary.

2 The JSDG

The abbreviation ‘JSDG’ is the same as the abbre-

viation used by Zhao [20]. The difference is, that

Zhao’s ‘JSDG’ stands for ‘Java Software Depen-

dence Graph’, and the ‘JSDG’ in this paper stands

for ‘Java System Dependence Graph’. This can be

seen as an extension to Zhao’s JSDG, where a dif-

ferent mechanism is implemented for dealing with

polymorphism and the representation of abstract

classes is extended beyond interfaces.

A JSDG is a multigraph which maps out con-

trol and data dependencies1 between the statements

of a Java program. Statements are categorised ac-

cording to whether they contribute to the structure

of a program (i.e. they are headers representing

methods, classes, interfaces and packages) or the

program’s behaviour (i.e. they belong to a method

body). Each category is represented differently on

the graph. When these different graphs are com-

bined, they provide a graph-based program repre-

sentation, which is suitable as a basis for a range of

software engineering applications.

The dependence graph is a complex construct

and is intended as an internal program representa-

tion, not a visual one. It is difficult to visualise a

graph which is composed of such a large number of

different types of nodes and edges. This can how-

ever be partially facilitated by interpreting the JSDG

as a layered architecture, where certain vertices on

one layer are visible only to adjacent layers [16].

Depending on the application the dependence

graph is intended for, not all of the nodes and edge

types are required. The complexity of the graph can

be reduced depending on the context in which it is

applied. For example, if we intend to slice the de-

pendence graph, any nodes or edges concerned with

Java interfaces can be omitted.

2.1 A Language-specific Representa-

tion

Object-oriented representations proposed by Larsen

and Harrold and Liang and Harrold [11, 12] gen-

erate the dependence graph from C++. Several of

the differences between C++ and Java require dif-

ferent edges or nodes in the graph. Its construction

relies on the fact that it is possible to perform some

preliminary control, data and call flow analysis on a

given Java program, in order to build a skeletal ver-

sion of the graph. Given that this framework is es-

tablished, other nodes relating to the program struc-

ture (e.g. method and class vertices) are added. The

accuracy of any traversal algorithm which operates

on the JSDG (e.g. a slicing algorithm) depends on

the accuracy of the flow analysis performed in the

preprocessing stage.

2.2 Statements

A statement represents the lowest layer in the JSDG.

It is an atomic construct representing a single ex-

pression in the source code of the program. A

statement representing a call to another method (a

callsite) requires a special representation and is de-

scribed in section 2.4.1. Livadas and Croll suggest

that accuracy of a slice on a dependence graph could

be improved by increasing the granularity of the

SDG to parse-tree level [13].

Java provides a more intuitive way to subdi-

vide statements; when a Java program is com-

piled, it is translated into an intermediate, platform-

independant format called the bytecode. There are

several bytecode manipulation and analysis tools

1A control dependence
�������

exists, if the execution of a statement B relies on the execution of a predicate statement A. A data

dependence
���	�
�

exists, if the execution of a statement B references a variable which is defined / modified in a statement A.
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2 THE JSDG 2.3 Method Dependence Graph

available (e.g. Soot2 and BCEL3), which would

make data and control flow analysis between indi-

vidual bytecode instructions possible. For the sake

of illustration, we will only consider the source-code

statement level construction of the graph.

2.3 Method Dependence Graph

The method dependence graph (MDG) represents a

single method or procedure in a program. It is the

next layer up from the statement layer. MDGs are

represented similarly in most OO dependence graph

approaches [10, 11, 12, 20]. The method entry ver-

tex is connected to any other vertices belonging to

the method via control dependence edges.

Parameter passing is modelled by introducing

actual and formal variables. On the calling side,

actual-in and actual-out vertices are tagged to copy

each variable to and from its temporary location as

required. The called method contains formal-in and

formal-out vertices, which copy parameter variables

from and to these temporary locations respectively.

Parameter-in edges connect actual-in and formal-in

vertices, while parameter-out edges connect formal-

out and actual-out vertices.

Further formal vertices are connected to the

method entry vertex to account for instance vari-

ables which may be referenced or modified during

the execution of the method. All formal vertices

are connected to the method entry vertex and all ac-

tual vertices are connected to the callsite via con-

trol dependence edges. The flow of data within a

method, to its actual-in and formal-out vertices and

from its actual-out and formal-in vertices, is indi-

cated by data dependence edges. The call depen-

dence edge indicates the link between the callsite

and the method being called.

Figure 1 illustrates an example of a simple

method which adds two integers. To put this ex-

ample into context, see the call from node C23 to

E26 in appendix C. The method is represented by

a method entry vertex (private int add(int c, int

d)), which is connected to statement vertices (int
result = c + d and return result) and formal-

in and formal-out vertices (c=c_in, d=d_in and

result_out=result) via control dependence edges

(plain arrows). The callsite (int added=add(a,b))

belongs to another method and is connected to its

actual-in and actual-out vertices (c_in=a, d_in=b

and added=result_out) via control dependence

edges. The call dependence edge from the callsite

to the method entry vertex is represented by a dotted

arrow. The actual-in vertices are connected to the

formal-in vertices via parameter-in edges (dashed

lines). The formal-out vertex is connected to the

actual-out vertex via a parameter-out edge (dashed

line). Data dependencies within the method (e.g.

from c=c_in to int result = c + d) are represented

by data dependence edges (dashed lines). A full leg-

end for all of the examples featured in this paper is

provided in appendix A.

c=c_in d=d_in

d_in=bc_in=a

int result = c + d return result result_out=result

added=result_out

int added=add(a,b)

private int add(int c, int d)

Figure 1: Example of a simple method call (ex-

tracted from appendix - call from node C26 to E29)

2.4 Class Dependence Graph

The class dependence graph (ClDG) represents the

classes in a program [11]. It is the next layer up

from the MDG layer. For every class, there exists a

class entry vertex, which is connected to the method

entry vertices of its methods via class membership

edges. These membership edges can be tagged as

either public, protected or package (default) to indi-

cate their visibility [10]. If one class inherits from

another, they are linked by a class dependence edge.

The class entry vertex is connected to its data mem-

bers via data member edges.

Figure 2 shows the ClDG of classes Simple-
Calc and AdvancedCalc (see appendix B). Inher-

itance is indicated by the class dependence edge

which passes between them. Note that although Ad-
vancedCalc inherits all of the data members and

methods belonging to SimpleCalc (apart from its

constructors), it only needs to be linked to its own

specific data members and methods. Inherited data

members and methods can simply be computed by

traversing up the class dependence edge and along

the class membership / data member edges of Sim-

pleCalc [10].

2http://www.sable.mcgill.ca/software/
3http://jakarta.apache.org/bcel/
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2 THE JSDG 2.4 Class Dependence Graph

private int add(int c, int d)

public int getA() public int getB()

public int average() private int divide(int c) public int multiply(int c, int d)

public class AdvancedCalc extends SimpleCalc

public int multiply()

public class SimpleCalc implements Calculator

public AdvancedCalc() public AdvancedCalc(int aIn, int bIn)public power()

public SimpleCalc(int aIn, bIn)

public SimpleCalc()

a b

Figure 2: The ClDGs of the SimpleCalc and Ad-

vancedCalc classes from appendix B (see nodes

CE17 and CE46)

2.4.1 Object Representation and Polymor-

phism

The JSDG represents different instances of a class

individually; this enables dependence graph opera-

tions such as slicing to take individual objects into

consideration [12]. A statement vertex v which ref-

erences an object is expanded into a tree depending

on the context in which v is used. The examples

(figures 3-6) are taken from the calculator example

given in appendices B and C. The following four

sections illustrate these possible expansions:

1. v is a parameter vertex representing a stati-

cally typed4 object: v is expanded into a tree.

Figure 3 illustrates the callsite for getStats(e),

given that it can only accept objects of the

type AdvancedCalc.

computePower(e)

a b

AdvancedCalc e

Figure 3: Example of single-typed parameter object

(see node C9 in appendix)

2. v is a parameter vertex representing a dynam-

ically typed5 object: v is connected to a child

vertex for each possible object type and ex-

pands each child vertex into a tree containing

data members belonging to that object. In fig-

ure 4, e can either be of types SimpleCalc or

AdvancedCalc.

a ab

SimpleCalc

e

b

getStats(e)

AdvancedCalc

Figure 4: Example of polymorphic parameter object

(see node C11 in appendix)

3. v is a callsite vertex and the method being

called is defined in a statically typed object:

Because the implementation of the method

can be determined statically, the callsite can

simply be expanded by adding the actual-in

and actual-out vertices. Note that, although

the method does not have any parameters, we

still need to represent the object data mem-

bers as actual-in vertices, because they repre-

sent the instance variables referenced by the

method. Figure 5 illustrates a call to power()
contained in the statically typed Advanced-

Calc object.

a b A1_out

AdvancedCalc.power

e.power()

Figure 5: Example of a call to a method in a single-

typed object (A1_out is the actual-out vertex ) (see

node C16a in appendix)

4. v is a callsite vertex and the method being

called is defined in a dynamically typed ob-

ject: v points to a vertex representing the ob-

ject defining the method being called. This

is further expanded into a tree where the

branches represent the candidate types. These

are further expanded to reveal the actual-in

and actual-out vertices for the (potentially dif-

ferent) method implementations and linked to

the method entry vertices via call edges. In

4The object type can be determined statically, without running the program
5The object type can only be determined dynamically
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2 THE JSDG 2.5 Interface Dependence Graph

figure 6, the multiply() implementation in Ad-

vancedCalc is different to the one in Simple-
Calc. The Java interpreter can only dynami-

cally determine which implementation to ex-

ecute.

20

SimpleCalc.multiply

e

206

AdvancedCalc.multiply

6

e.multiply(6,20)

Figure 6: Example of a call to a method in a poly-

morphic object (see node S12a in appendix)

In every case, an object is expanded to reveal its

data type(s). These are further expanded to repre-

sent their respective data members. If a data member

happens to be another object, this must further be

expanded to reveal its type(s) etc. This can become

problematic if the object is defined recursively. To

address this issue, Liang and Harrold employ k-

limiting (the tree is only expanded to a level k) [12].

2.5 Interface Dependence Graph

Interface Calculator

public int average()

d=d_inc=c_in

int getB() int getA()

public int multiply(int c, int d)

private int divide(int c)

private int add(int c, int d)

public int average()

public SimpleCalc(int a, int b)

public SimpleCalc()

public int multiply(int c, int d)

int c int d

SimpleCalc implements Calculator

result_out=result

int

Figure 7: The InDG (see node IE43 in appendix)

The Java interface has been represented by both

Kovács et al. and Zhao [10, 20]. Its role is to spec-

ify the signatures of the methods which must be im-

plemented by any object implementing the interface.

Neither approach considers the representation of ab-

stract classes which are not interfaces. The JSDG

represents abstract classes as well as interfaces by

treating the interface as a special kind of abstract

class.

The JSDG deviates from previous interface rep-

resentations by treating the interface as a special

kind of abstract class. Because abstract classes can

contain method implementations, the use of callsites

to represent abstract methods as proposed by Zhao

[20] becomes unsuitable. Abstract methods are rep-

resented in the JSDG with method entry vertices.

Both Kovács et al. and Zhao omit parameter-out

vertices from abstract method declarations [10, 20].

To fully represent a method signature, if a method

returns a value (i.e. is not void), the JSDG connects

the method entry vertex to a parameter-out vertex.

The interface dependence graph (InDG) con-

sists of an interface entry vertex which is con-

nected to a set of method entry vertices represent-

ing its abstract methods via abstract member edges.

The method entry vertices are connected to param-

eter vertices, which represent their input parame-

ters6. Each method entry vertex is connected to the

method entry vertex of the method implementing it

by an implement abstract method edge. If a class

implements an interface, the class is connected to

the interface by an implements edge. If a class C1

extends class C2, and C2 implements an interface,

C1 will automatically implement that interface as

well. C1 does not to be connected to the interface by

an implemented edge, as this is implicit in the inher-

itance hierarchy. Figure 7 illustrates the Calculator

InDG, which is connected to the SimpleCalc class.

The multiply(int c, int d) vertex has been expanded

to reveal its formal vertices in order to illustrate how

parameters from the interface are connected to their

implementation counterparts.

Abstract Classes An abstract method contains

only the method signature and leaves its implemen-

tation to a subclass. If a class contains an abstract

method, it must itself be declared abstract. Ab-

stract classes cannot be instantiated. In C++ the

equivalent effect is achieved by including a pure vir-

tual method7 in the class. Because interfaces are

themselves abstract, abstract classes are represented

in a similar fashion. The interface entry vertex is

replaced with a class entry vertex. The class en-

try vertex is connected to abstract methods via an

6These vertices do not need to be tagged to assign an input value to a temporary location, because the interface is abstract
7A pure virtual method is a method that is declared as virtual and does not include a method body, but is initialised as ‘0’.
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3 CONSTRUCTING THE GRAPH 2.6 Package Dependence Graph

abstract member edge. Abstract methods are con-

nected to their implementations via implement ab-

stract method edges, as they would be in an inter-

face. Non-abstract methods are represented as they

would be in a normal ClDG. If a class entry vertex

has at least one abstract member edge, it is an ab-

stract class.

Absence of Virtual Methods In C++, the inheri-

tance structure is slightly more complicated than in

Java. Methods which can be overridden and dynam-

ically bound at run-time must be explicitly marked

as ‘virtual’. In Java, it is simply presumed that

any derived class which contains a method with the

same signature as a method in a superclass overrides

all definitions further up the inheritance hierarchy.

Because Liang and Harrold base their dependence

graph on C++, they require a more complex inheri-

tance structure [12]. Because Java allows only sin-

gle inheritance and does not feature virtual methods,

the JSDG can adopt a simpler inheritance structure,

where derived classes can simply reuse base-class

method definitions [10] (its simplicity is illustrated

in figure 2).

2.6 Package Dependence Graph

A package defines a collection of classes which are

conceptually similar or are dedicated to a similar

purpose. It is represented by a package dependence

graph (PaDG) [10, 20]. Packages are important in

terms of slicing, because they are needed to accu-

rately compute variable visibility. A package entry

vertex represents the package, which is connected

to each class and interface entry vertex belonging to

the package via a package member edge.

3 Constructing the Graph

Ultimately, a Java System Dependence Graph

(JSDG) must satisfy the following properties: It

must

�
Represent methods, classes, and packages

[10, 20]

� Represent abstract methods / classes and in-

terfaces

� Represent individual objects (it must be able

to correctly represent polymorphic parame-

ters calls to polymorphic objects) [12]

� Represent single inheritance (class hierarchy)

[10]

The JSDG pools together the benefits of several

previous dependence graph approaches. It pro-

vides a new representation for interfaces and ab-

stract classes and combines the single-inheritance

representation presented by Kovács et al. with the

representation for methods, classes and packages

proposed by Kovács et al. and Zhao [10, 20]. It

also represents individual objects and can distin-

guish data members in parameter objects [12]. The

pre-processing stage is beyond the scope of this doc-

ument, but some important features are discussed

briefly. The graph construction proceeds as follows:

1. Construct MDGs

(a) Pre process each method to ascertain

callsites

(b) Expand objects

(c) Build data dependencies for data mem-

bers

(d) Connect MDG nodes to a class node

2. Construct ClDG

3. Construct InDG

4. Construct PaDG

Pre-processing the Java program Building the

JSDG requires prior control and data flow analysis.

As discussed in section 2.1, this stage is instrumen-

tal in ensuring that the resulting JSDG and any op-

erations on it are as accurate as possible. Chambers

et al. propose an approach for accurately analysing

data dependencies in Java programs which can han-

dle exceptions, synchronization and memory con-

sistency [3]. Tonella et al. propose a context

and flow-insensitive Points-To Analysis (PTA) ap-

proach, which can reduce the size of the initial graph

to increase the accuracy of operations such as slic-

ing [18]. Grove et al. propose an approach to elicit

call-graphs for OO programs [5].

A practical approach to carry out this prior anal-

ysis would be to use the Soot analysis framework,

which provides several packages to analyse the Java

byte-code. A problem with using Soot for this pur-

pose is that it operates on the Java byte-code, not the

source code. One line of source code usually con-

stitutes several individual byte-code instructions8.

8Byte-code instructions are mapped to their respective source code line numbers in the LineNumberTable attribute of a class.
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3 CONSTRUCTING THE GRAPH

This is made more difficult by the fact that if a class

file is to be used in Soot, it has to be converted into

one of several intermediate Soot formats (i.e. Baf,

Jimple or Grimp), further confusing the mapping

between intermediate instructions and source code

line numbers. The upside of analysing a program

at a byte-code level is that more precise results can

be produced, especially in the case of slicing, where

it is usually desirable to obtain a slice which is as

accurate as possible.

1. Construct MDGs

1. (a) Processing Callsites In order to determine

how the methods communicate with each other,

each method must be processed individually. Meth-

ods to be processed are identified by traversing the

call graph. Once a callsite has been identified it can

be expanded (ref. 2.4.1). Once this is done, the

call dependence edge is followed to determine the

called method, where the appropriate formal-in and

formal-out vertices are connected to its entry ver-

tex. Conforming to Liang and Harrold’s approach,

we only add parameter vertices for parameters and

global variables in the callee’s GREF and GMOD9.

A data dependence exists between verticesA and

B if A modifies / defines a variable which is refer-

enced / used by B. To compute the data dependen-

cies introduced by an object’s data members, Liang

and Harrold only associate the use of an object with

a callsite if the called method is not a construction.

An object definition is associated with a call vertex

if the called method is not a destruction. In Java,

destructors do not exist. In C++, every object is de-

stroyed when it goes out of scope or a pointer vari-

able is deleted. In Java, unused objects are automat-

ically destroyed in order to free up memory by way

of a garbage collector. Java’s closest equivalent of

the destructor is the finalize() method10. Hence, an

object definition is associated with a call vertex if it

is not a finalize() method.

1.(b) Expand Objects In order to expand ob-

jects, Liang and Harrold introduce the notion of

an object-flow subgraph. This is a subgraph in

the data dependence graph of a method, contain-

ing only the vertices that reference a given ob-

ject. This subgraph is traversed, and each vertex

v is expanded as discussed in section 2.4.1. In

the getStats(SimpleCalc e) method given in fig-

ure 8, the vertices e, e.getA() and e.getB() be-

long to the object-flow subgraph and hence are ex-

panded. [Note that it is necessary to expand the

System.out.println... statement, because it is com-

posed of two method calls, which must be repre-

sented separately.]

public void getStats(SimpleCalc e)

System.out.println("a: "+e.getA()+"b: "+e.getB())

e.getA() e.getB()

e

Figure 8: Example of an object-flow subgraph (ver-

tices belonging to the graph are in bold)

1.(c) Build Data Dependencies for DataMembers

Once object vertices have been expanded, data de-

pendencies must be established for the individual

object data members. For a callsite c in a subgraph,

the definition set DEF(c) of data members consists

of c’s actual-out vertices. The use set USE(c) is

consists of c’s actual-in vertices. If the call state-

ment carries a parameter object, the object’s data

members must be added to the DEF and USE sets.

For a parameter object, if the vertex defines the ob-

ject11, the object’s data members are added to the

DEF set. Similarly, if the vertex uses the object,

the data members are added to the USE set. Having

computed the DEF and USE sets, it is possible to

generate the def-use chains as data dependencies.

2. Construct ClDG It is assumed that the class

hierarchy is calculated as part of the pre-processing

stage. For every class, a class entry vertex is gener-

ated, which is connected to the method entry ver-

tices of methods belonging to that class via class

membership edges. Kovács et al. use this connec-

tion to determine the visibility of the method within

the class [10]. We adopt this approach as well, so

that every class membership edge is tagged as either

9GMOD(m) is the set of non-local variables which can be modified within a method m and GREF(m) is the set of non-local

variables which can be referenced [1].
10In C++, objects are explicitly destroyed as soon as they are out of scope. In Java, they are marked as unused when there are

no longer any non-garbage references pointing to them. There is no way of guaranteeing when the garbage collector runs and when

the finalize() is run. The timing of the garbage collection is also implementation-dependent, i.e. when the finalize() method is run

depends in part on the Java implementation being used.
11An example of this would be i.compareTo(new Integer(5)); where i is of type Integer
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4 OPERATING ON THE JSDG

public, private, or protected. If a class A extends a

class B, A is connected to B via a class dependence

edge. By connecting the classes in this manner,

Java’s single inheritance structure is emphasised. If

a class contains an abstract method (i.e. the class

is abstract), it is still represented by a conventional

class entry vertex, but is connected to the abstract

method via an abstract member edge. The abstract

method is connected to its implementation in a sub-

class via an implement abstract method edge.

3. Construct InDG For every interface, there ex-

ists an interface entry vertex. This is connected

to method entry vertices representing the abstract

methods in the interface. These are each connected

to their set of formal-in vertices. Each method is

connected to its respective implementation’s method

entry vertex via an implements abstract method

edge. The formal-in vertices connected to the inter-

face method entry vertices are connected to their im-

plementation counterparts via parameter-in edges.

4. Construct PaDG The PaDG is represented by

a package entry vertex, which is connected to its

class entry vertices and interface entry vertices via

package edges. It is possible for a program to con-

sist of package hierarchies. In this case, subpack-

ages are connected to superpackages via package

dependence edges. This is an important feature for

multi-package programs, because it enables the ac-

curate calculation of the visibility of classes.

4 Operating on the JSDG

Although this paper focuses on the graph itself, it

makes sense to give the reader an idea of some of its

potential benefits. The main application is slicing,

which has been the focus of the majority of depen-

dence graph based papers [9, 10, 11, 12, 14, 20].

In addition to slicing, Horwitz and Reps also pro-

pose that dependence graphs can be used to establish

differences between two programs (program differ-

encing) and to integrate changes carried out on one

program into another similar program (program in-

tegration) [8]. The combination of data and control

dependencies provides a useful basis for the calcula-

tion of program metrics [14]. It would also be inter-

esting to investigate the usefulness of the JSDG with

respect to software inspections. In object-oriented

software inspections, delocalised software artifacts

which are connected by control and data dependen-

cies hamper code reviews, because the code inspec-

tor is forced to jump from one part of the code to

another [4].

4.1 Slicing

If the JSDG is to be sliced, it needs an additional

edge called the summary edge. These represent

the transitive flow of dependence across a callsite

caused by both control and data dependencies. Such

an edge connects an actual-in vertex to an actual-out

vertex if the value associated with the actual-in ver-

tex may affect the value associated with the actual-

out vertex. Figure 10 shows the same callsite ex-

ample as figure 1, but adds transitive dependencies

from c_in=a to added=result_out and d_in=b to

added=result_out.

c=c_in

int added=add(a,b)

private int add(int c, int d)

d=d_in

d_in=bc_in=a

int result = c + d return result result_out=result

added=result_out

Figure 9: Example of method call with transitive

edges between actual-in and actual-out vertices

The slicing algorithm proposed by Horwitz et

al. is split into two phases. The first phase tra-

verses backwards along control, call, parameter in

and data dependence edges marking every graph

vertex it passes. In the second pass, the algorithm

traverses back from each marked vertex along con-

trol, parameter out and data dependence edges [9].

Liang and Harrold extended this algorithm to enable

the slicing of individual objects [12]. An example

of a slice according to the Horwitz et al. method is

marked out in appendix C (shaded vertices belong

to a slice taken from statement S25).

4.2 Program Metrics

Ottenstein and Ottenstein suggested that the depen-

dence graph would be a suitable basis for the cal-

culation of program metrics. The JSDG allows indi-

vidual methods, classes or packages to be measured.

This could be especially useful as a heuristic to soft-

ware restructuring. If the complexity in a given area

of the program exceeds a certain threshold, it could

indicate that a refactoring (or other form of code re-

structuring) could be necessary.

8
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It would be interesting to expand on Weiser’s

original investigations into slicing based metrics

[19]. Bieman and Ott propose the use of program

slices to measure functional cohesion [2]. Accord-

ing to Riel, a good object-oriented designer strives

for “tight cohesion within classes and loose cou-

pling between classes” [15]. It would be useful to

extend this measure to the object-oriented paradigm.

The JSDG provides the basic representation for the

computation of these slices.

4.3 Software Inspections

Dunsmore et al. state that delocalised software

artifacts hamper object oriented code inspections

[4]. Software artifacts become delocalised be-

cause object-oriented paradigm features such as in-

heritance, polymorphism and dynamic binding can

cause code which is responsible for the execution

of a single task to be dispersed throughout the pro-

gram. These dispersed artifacts are all connected

via some form of dependence (or chain of depen-

dencies), which can be traced on the JSDG. Slicing

could be used to statically determine possible paths

of execution in the program, providing the inspector

with a reading strategy for the inspection.

“Program understanding requires tracing

chains of method invocations up and down the class

hierarchy” [4]. The inspector must be able to ab-

stract the high level function of a software module to

verify that it conforms to its specification. Harman

et al. propose a framework for combining slicing

and concept assignment [6], which would signifi-

cantly reduce this laborious aspect of inspections.

Further research is required if this approach is to

be made practical for object-oriented systems. The

JSDG provides a useful basis for investigating the

feasibility of extracting Executable Concept Slices

(ECSs) for object-oriented programs.

4.4 Practical Issues

The graph has not been designed to incorporate ex-

ceptions and threads. Sinha et al. represent excep-

tions by adding vertices and edges around the try

and catch clauses of an exception[17]. Hatcliff et

al. study the slicing of multi-threaded programs, but

do not specifically relate their solution to a program

dependence graph representation [7].

Another problem that is prevalent amongst most

static analysis techniques is that the graph produced

is very substantial. This is due to the fact that a static

approach must lay out every possible execution that

could possibly be carried out by the program. The

size can make the generation and storage of such a

graph an expensive process. Depending on the pur-

pose for which it is intended certain edges and ver-

tices can be removed if they are not going to be used

(i.e. interface related vertices and edges can be re-

moved if the graph is only needed for slicing opera-

tions). If we are only interested in a given subset of

methods in the program other parts could be sliced

away.

5 Conclusions

This dependence graph provides a useful basis for

the representation of Java programs. It enables sev-

eral useful software engineering operations to be

carried out as queries / manipulations on the graph,

which offers greater speed and precision than con-

ventional methods (Horwitz et al. illustrate the in-

crease in precision when slicing the SDG as opposed

to Weiser’s conventional algorithm [9]). It provides

a representation for interfaces and abstract classes

and enables objects and object data members to be

treated individually in any operation (e.g. the pro-

gram can be sliced object by object). Now, it is pos-

sible to re-interpret the dependence graph applica-

tions as suggested by Ottenstein and Ottenstein and

Horwitz et al. in terms of the OO paradigm. Sev-

eral potential research areas concerning the JSDG

have been proposed. The next logical step in mak-

ing the JSDG a practical software engineering tool

is to develop a tool which will automatically build

an internal representation of a given Java program.
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A Legend

Data member

class / interface entry vertex

method entry vertex / statement vertex /  formal or actual parameter in/out vertex

control dependence

belongs to (can be tagged to denote the visibility of a method) OR interface member edge

data dependence edge

call / implements abstract method edge

implements edge
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B Example Code

CE1 public class Execute{ CE17 public class SimpleCalc implements Calculator{ IE43 interface Calculator{

E2 public static void main(String args[]){ S18 int a,b; E44 int average();

S3 SimpleCalc e; E19 public SimpleCalc(){ E45 int multiply(int c, int d);

S4 if(args.length > 0){ S20 a = 6; }

C5 int a = Integer.parseInt(args[0]); S21 b = 20;

C6 int b = Integer.parseInt(args[1]); } CE46 public class AdvancedCalc extends SimpleCalc{

C7 e = new SimpleCalc(a, b); E22 public SimpleCalc(int aIn, int bIn){ E47 public AdvancedCalc(){

} S23 a = aIn; S48 a = 6;

else C24 b = multiply(a, bIn); S49 b = 20;

{ } }

C8 e = new AdvancedCalc(); E25 public int average(){ E50 public AdvancedCalc(int aIn, int bIn){

C9 computePower(e); C26 int added = add(a,b); S51 a = aIn;

} C27 int divided = divide(added); C52 b = multiply(a, bIn);

S10 System.out.println(e.average()); S28 return divided; }

C11 getStats(e); } E53 protected int multiply(int c, int d){

S12 System.out.println(e.multiply(6,20)); E29 private int add(int c, int d){ S54 int result = c*d;

} S30 int result = c+d; S55 return result

E13 public void getStats(SimpleCalc e){ S31 return result; }

S14 System.out.println(“a: “+ e.getA() + “ b: “ + e.getB()); } E56 public int power(){

} E32 private int divide(int c){ S57 int result=a^b;

E15 public void computePower(AdvancedCalc e){ S33 int result = c/2; S58 return result

S16 System.out.println(e.power()); S34 return result; }

} } }

} E35 protected int multiply(int c, int d){

S36 for(int i=0; i<c; i++){

S37 d=d+d;

}

S38 return d;

}

E39 public int getA(){

S40 return a;

}

E41 public int getB(){

S42 return b;

}

}

1
1



C ENTIRE JSDG FOR EXAMPLE CODE

C Entire JSDG for Example Code

A backwards-slice is demonstrated, taken from vertex S25 (return divided). This page is best viewed in

colour. Vertices marked by the first phase of the slice are shown in blue (darker shade) and those marked

by the second phase are shown in pink (lighter shade).
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