Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

3d electron fluid turbulence at nanoscales in dense plasmas

Shaikh, D. and Shukla, P.K. (2008) 3d electron fluid turbulence at nanoscales in dense plasmas. New Journal of Physics, 10. ISSN 1367-2630

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We have performed three-dimensional (3D) nonlinear fluid simulations of electron fluid turbulence at nanoscales in an unmagnetized warm dense plasma in which mode coupling between wave function and electrostatic (ES) potential associated with underlying electron plasma oscillations (EPOs) lead to nonlinear cascades in inertial range. While the wave function cascades towards smaller length scales, ES potential follows an inverse cascade. We find from our simulations that the quantum diffraction effect associated with a Bohm potential plays a critical role in determining the inertial range turbulent spectrum and the subsequent transport level exhibited by the 3D EPOs.