Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

The quantum free-electron laser

Bonifacio, R. and Piovella, N. and Cola, M.M. and Volpe, L. and Schiavi, A. and Robb, G.R.M. (2008) The quantum free-electron laser. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 593 (1-2). pp. 69-74. ISSN 0168-9002

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A Free-Electron Laser (FEL) operating in the quantum regime can provide a compact and monochromatic X-ray source. Here we review the basic principles of a high-gain quantum FEL starting from noise, with special emphasis on the self-amplified spontaneous emission (SASE) mode operation. In the first part, the full quantum theory of the N-particle and single-radiation-mode FEL Hamiltonian is presented. Quantum effects such as cooperative gain, discrete spectrum and line narrowing are described, both in the multi-particle and in the second quantization formalism. In the second part, propagation effects (i.e. slippage) are described and the main features of the quantum SASE regime are discussed. The broad and spiky radiation spectrum observed in the classical SASE reduces in the quantum regime to a series of narrow lines, associated to sequential transitions between adjacent momentum states. A simple interpretation of the discrete nature of the spectrum and of the line width of the single spike observed in the quantum regime is presented.