Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Synthetic diamond for intracavity thermal management in compact solid-state lasers

Millar, P. and Birch, R.B. and Kemp, A.J. and Burns, D. (2008) Synthetic diamond for intracavity thermal management in compact solid-state lasers. IEEE Journal of Quantum Electronics, 44 (7-8). pp. 709-717. ISSN 0018-9197

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The intracavity use of newly developed low-birefringence synthetic diamond for thermal management in compact solid-state lasers is examined both experimentally and theoretically. A comparison-using single-crystal natural diamond as a base line-is made between synthetic, single-crystal diamond types: chemical vapor deposition and high pressure/high temperature grown diamond. The synthetic diamond samples are shown to possess significantly lower birefringence than often occurs in natural single-crystal diamond while maintaining the excellent thermal management properties and low insertion loss of natural diamond. Low threshold, high efficiency laser operation is demonstrated in polarization sensitive cavities incorporating intracavity synthetic diamond using both doped-dielectric and semiconductor gain elements. In addition, finite element analysis is used to demonstrate the potential of diamond to reduce thermal distortion and stress in doped-dielectric disk lasers. A 15W Nd:GdVO􀀀 disk laser utilizing diamond is demonstrated. These results highlight the potential of low birefringence synthetic diamond for intracavity thermal management applications in solid-state lasers. (Abstract from: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4531694)