Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Synthetic diamond for intracavity thermal management in compact solid-state lasers

Millar, P. and Birch, R.B. and Kemp, A.J. and Burns, D. (2008) Synthetic diamond for intracavity thermal management in compact solid-state lasers. IEEE Journal of Quantum Electronics, 44 (7-8). pp. 709-717. ISSN 0018-9197

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The intracavity use of newly developed low-birefringence synthetic diamond for thermal management in compact solid-state lasers is examined both experimentally and theoretically. A comparison-using single-crystal natural diamond as a base line-is made between synthetic, single-crystal diamond types: chemical vapor deposition and high pressure/high temperature grown diamond. The synthetic diamond samples are shown to possess significantly lower birefringence than often occurs in natural single-crystal diamond while maintaining the excellent thermal management properties and low insertion loss of natural diamond. Low threshold, high efficiency laser operation is demonstrated in polarization sensitive cavities incorporating intracavity synthetic diamond using both doped-dielectric and semiconductor gain elements. In addition, finite element analysis is used to demonstrate the potential of diamond to reduce thermal distortion and stress in doped-dielectric disk lasers. A 15W Nd:GdVO􀀀 disk laser utilizing diamond is demonstrated. These results highlight the potential of low birefringence synthetic diamond for intracavity thermal management applications in solid-state lasers. (Abstract from: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4531694)

Item type: Article
ID code: 19531
Notes: http://suprimo.lib.strath.ac.uk/primo_library/libweb/action/search.do?cs=frb&frbg=5673866&fctN=facet_frbrgroupid&fctV=5673866&frbg=&dum=true&vid=SUVU01&vl(54032236UI0)=lsr02&vl(96071691UI1)=all_items&srt=rank&indx=1&dstmp=1274879418340&tab=local&ct=search&scp.scps=scope%3A(SU)&vl(freeText0)=IEEE%20Journal%20of%20Quantum%20Electronics&fn=search&mode=Basic&dscnt=0
Keywords: diamond, semiconductor laser, solid-state laser, Science (General), Physics, Atomic and Molecular Physics, and Optics, Electrical and Electronic Engineering, Condensed Matter Physics
Subjects: Science > Science (General)
Science > Physics
Department: Faculty of Science > Institute of Photonics
Faculty of Science > Physics
Related URLs:
Depositing user: Strathprints Administrator
Date Deposited: 26 May 2010 14:53
Last modified: 28 Mar 2014 05:16
URI: http://strathprints.strath.ac.uk/id/eprint/19531

Actions (login required)

View Item