Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Principal component and hierarchical cluster analyses as applied to transformer partial discharge data with particular reference to transformer condition monitoring

Babnik, T. and Aggarwal, R.K. and Moore, P.J. (2008) Principal component and hierarchical cluster analyses as applied to transformer partial discharge data with particular reference to transformer condition monitoring. IEEE Transactions on Power Delivery, 23 (4). pp. 2008-2016. ISSN 0885-8977

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper analyses partial discharges obtained by remote radiometric measurements from a power transformer with a known internal defect. Since fingerprints of remote radiometric measurements are not available, the formation of clusters with similar features obtained from captured partial discharge data is crucial. Hierarchical cluster analysis technique is used as a method for grouping different signals. Investigation based on Euclidian and Mahalanobis distance measures and Ward and Average linkage algorithms were performed on partial discharge data pre-processed by principal component analysis. As a result of the analysis, a clear separation of partial discharges emanating from the transformer and discharges emanating from its surrounding is achieved; this in turn should enhance the methodologies for condition monitoring of power transformers.