Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

A finite difference technique for solving the oldroyd-b model for 3d-unsteady free surface flows

Tome, M.F. and Castelo, A. and Ferreira, V.G. and McKee, S. (2008) A finite difference technique for solving the oldroyd-b model for 3d-unsteady free surface flows. Journal of Non-Newtonian Fluid Mechanics, 154 (2-3). pp. 179-206. ISSN 0377-0257

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This work presents a numerical method for solving three-dimensional (3D) viscoelastic unsteady free surface flows governed by the Oldroyd-B constitutive equation. It is an extension of the two-dimensional (2D) technique introduced by Tomé et al. [M.F. Tomé, N. Mangiavacchi, J.A. Cuminato, A. Castelo, S. McKee, A numerical technique for solving unsteady viscoelastic free surface flows, J. Non-Newt. Fluid Mech. 106 (2002) 61-106]. The governing equations are solved by a finite difference method on a 3D-staggered grid. Marker particles are employed to describe the fluid providing both visualization and the location of the free surface. The numerical technique is validated by using an exact solution of the flow of an Oldroyd-B fluid inside a 3D-pipe. Numerical results include the simulation of the transient extrudate swell and jet buckling.