Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Dynamic friction model and its application in flat rolling

Tan, X. and Yan, X.T. and Juster, N.P. and Raghunathan, S. and Wang, J. (2008) Dynamic friction model and its application in flat rolling. Journal of Materials Processing Technology, 207 (1-3). pp. 222-234. ISSN 0924-0136

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

There have not been any friction models applied to successfully predict distributions of contact stresses in flat rolling yet, in particular for the neutral plane. In this paper, the dynamic friction model (DFM) is expressed as a combination of both definitions of the viscosity and the friction, and is employed to derive underlying mathematical expressions of forces in flat rolling. The model is validated through experimental results obtained by Lenard et al. in the literature for various rolling processes, hot rolling, warm rolling and cold rolling of aluminium. By comparisons of the experimental data with the results predicted by the dynamic friction model, Amontons-Coulomb's friction model and the constant friction model, it is found that the application of the dynamic friction model leads to a better solution to prediction of contact stresses at the neutral plane. It is believed that the dynamic friction model could extensively be used to resolve dynamic plasticity problems of solids.