Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Nonlinear structure in a current-carrying collisional dusty plasma

Haas, F. and Shukla, P.K. (2008) Nonlinear structure in a current-carrying collisional dusty plasma. Physics of Plasmas, 15 (9). 093702-093702. ISSN 1070-664X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A perpendicular ion drift is proposed as a possible mechanism for the generation of magnetic field structures in a highly collisional dusty plasma. The basic dissipation mechanism is assumed to be the dust-neutral momentum exchange, so that plasmas with a small ionization fraction are natural candidates for experiments. The model reduces to a nonlinear partial differential equation for the vector potential. The conditions for linear instability are presented. Possible stationary states are periodic arrangements for the magnetic field, described by a Lienard equation. The fully depleted ion-dust case is also considered in detail. Applications of the present work to magnetic field structures in planetary rings, comets, and low-temperature dusty plasma experiments are discussed. A necessary condition for the validity of the model is a sufficiently slow time scale of the generated magnetic fields in dusty plasmas.