Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Distributed optical fibre sensing of temperature using time-correlated two-photon excited fluorescence : theoretical overview

Dalzell, C. J. and Han, T. P. J. and Ruddock, I. S. (2008) Distributed optical fibre sensing of temperature using time-correlated two-photon excited fluorescence : theoretical overview. Applied Physics B: Lasers and Optics, 93 (2-3). pp. 687-692. ISSN 0946-2171

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The general theory of a distributed temperature sensor based on time-correlated two-photon excited fluorescence in doped optical fibre is presented. Counter-propagating excitation pulses generate a two-photon excited fluorescence flash at their overlap which can be scanned along the length of the fibre by means of a variable mutual delay. The temperature at the sensed location is obtained using the decay time of the fluorescence from this position. As the power of the fluorescence flash is shown to be completely independent of excitation pulse duration and temporal profile, the sensor does not require a picosecond or femtosecond excitation source for operation. Background fluorescence may be reduced by optimising pulse shape and duration, or eliminated entirely by suitable combinations of the pulse wavelengths and the absorption spectrum of the doped medium.

Item type: Article
ID code: 19445
Keywords: optical fibre sensing, time-correlated two-photon excited fluorescence, Optics. Light, Physics and Astronomy(all), Physics and Astronomy (miscellaneous)
Subjects: Science > Physics > Optics. Light
Department: Faculty of Science > Physics
Related URLs:
    Depositing user: Strathprints Administrator
    Date Deposited: 25 May 2010 15:40
    Last modified: 05 Sep 2014 02:38
    URI: http://strathprints.strath.ac.uk/id/eprint/19445

    Actions (login required)

    View Item