Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Molecular theory of layer contraction in smectic liquid crystals

Gorkunov, M.V. and Osipov, M.A. (2008) Molecular theory of layer contraction in smectic liquid crystals. Journal of Physics: Condensed Matter, 20 (46). p. 465101. ISSN 0953-8984

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The period of the layered structure in smectic A and smectic C liquid crystal phases has been calculated numerically by direct minimization of the mean-field free energy which takes into account the interaction between molecules in adjacent smectic layers. The smectic layer spacing is calculated for two systems characterized by conventional and anomalously weak layer contraction in the smectic C phase. It is then compared with the simple estimate based on the average projection of the molecular long axis on the smectic layer normal. For both systems, temperature variation of the average molecular projection is qualitatively similar to that of the calculated layer spacing although certain quantitative deviations exist.

Item type: Article
ID code: 19437
Keywords: soft matter, liquids and polymers, optics, quantum optics and lasers, Condensed matter, structural, mechanical & thermal, Mathematics, Physics, Materials Science(all), Condensed Matter Physics
Subjects: Science > Mathematics
Science > Physics
Department: Faculty of Science > Mathematics and Statistics
Faculty of Science > Mathematics and Statistics > Mathematics
Related URLs:
    Depositing user: Strathprints Administrator
    Date Deposited: 25 May 2010 12:52
    Last modified: 28 Mar 2014 05:17
    URI: http://strathprints.strath.ac.uk/id/eprint/19437

    Actions (login required)

    View Item