Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Measuring algal fluorescence from space in optically complex coastal waters

McKee, D. and Cunningham, A. (2008) Measuring algal fluorescence from space in optically complex coastal waters. Sea Technology, 49 (11). pp. 41-44. ISSN 0093-3651

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The complexity of the relationship between chlorophyll concentration and sun-induced chlorophyll fluorescence (SICF) in coastal waters and shelf sea waters is explored using advanced radiative transfer simulations and recent estimates of material-specific inherent optical properties obtained from coastal waters using state-of-the-art in-situ instrumentation. The aim is to systematically analyze the influence of non-algal materials on SICF signals and determine the potential performance of the moderate-resolution imaging spectroradiometer fluorescence line height algorithm for coastal waters. If the light field is subject to non-algal influence, then so is the chlorophyll fluorescence signal, which means that users of remote sensing products based on SICF should be aware of the potential influence of nonalgal materials and be careful in interpreting such products from turbid coastal waters.