Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Landau model for polymer-stabilized ferroelectric liquid crystals: experiment and theory

Archer, P. and Dierking, I. and Osipov, M.A. (2008) Landau model for polymer-stabilized ferroelectric liquid crystals: experiment and theory. Physical Review E, 78 (5). 051703-051703. ISSN 1539-3755

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The interaction between a phase separated polymer network and a liquid crystal was studied across the smectic-A* (Sm-A*) to smectic-C* (Sm-C*) phase transition of a polymer-stabilized ferroelectric liquid crystal polymerized in the Sm-A* phase. Using precise measurements of the tilt angle and the spontaneous polarization as functions of the external electric field and polymer concentration, the effective coefficients of the Landau expansion of the free energy of the Sm-C* phase have been determined experimentally. The observed polymer concentration dependence of the Landau expansion coefficients is explained using a more general theoretical model which incorporates the effect of polymer networks on the local liquid crystal director configuration. In particular, using experimental estimates of the penetration depth of the polymer network into the liquid crystal, it is shown that the b coefficient calculated from the Landau model increases with polymer concentration, evidencing the relationship determined experimentally.