Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Intramolecular 1,8-hydrogen-atom transfer reactions in (1 -> 4)-o-disaccharide systems: conformational and stereochemical requirements

Francisco, C.G. and Herrera, A.J. and Kennedy, A.R. and Martin, A. and Melian, D. and Perez-Martin, I. and Quintanal, L.M. and Suarez, E. (2008) Intramolecular 1,8-hydrogen-atom transfer reactions in (1 -> 4)-o-disaccharide systems: conformational and stereochemical requirements. Chemistry - A European Journal, 14 (33). pp. 10369-10381. ISSN 0947-6539

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The stereochemical and conformational factors controlling the intramolecular hydrogen-atom transfer (HAT) reaction between the two pyranose units in a (14)-O-disaccharide when promoted by a primary 6-O-yl radical are studied. Models with -D-Glcp-(14)--D-Glcp, -L-Rhamp-(14)--D-Galp or -D-Manp-(14)--L-Gulp skeletons led exclusively to the abstraction of the hydrogen from HC-5 and the formation, through a nine-membered transition state, of a 1,3,5-trioxocane ring system in a stable boat-chair conformation. Notwithstanding, derivatives of -L-Rhamp-(14)--D-Glcp or -D-Manp-(14)--D-Galp exclusively abstract the hydrogen from HC-1 through a seven-membered transition state and, therefore, lead to an interglycosidic spiro ortho ester.