Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Intramolecular 1,8-hydrogen-atom transfer reactions in (1 -> 4)-o-disaccharide systems: conformational and stereochemical requirements

Francisco, C.G. and Herrera, A.J. and Kennedy, A.R. and Martin, A. and Melian, D. and Perez-Martin, I. and Quintanal, L.M. and Suarez, E. (2008) Intramolecular 1,8-hydrogen-atom transfer reactions in (1 -> 4)-o-disaccharide systems: conformational and stereochemical requirements. Chemistry - A European Journal, 14 (33). pp. 10369-10381. ISSN 0947-6539

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The stereochemical and conformational factors controlling the intramolecular hydrogen-atom transfer (HAT) reaction between the two pyranose units in a (14)-O-disaccharide when promoted by a primary 6-O-yl radical are studied. Models with -D-Glcp-(14)--D-Glcp, -L-Rhamp-(14)--D-Galp or -D-Manp-(14)--L-Gulp skeletons led exclusively to the abstraction of the hydrogen from HC-5 and the formation, through a nine-membered transition state, of a 1,3,5-trioxocane ring system in a stable boat-chair conformation. Notwithstanding, derivatives of -L-Rhamp-(14)--D-Glcp or -D-Manp-(14)--D-Galp exclusively abstract the hydrogen from HC-1 through a seven-membered transition state and, therefore, lead to an interglycosidic spiro ortho ester.