Automatic Synthesis and use of Generic Types in Planning

Derek Long and Maria Fox
Department of Computer Science,
University of Durham, UK
maria.fox@dur.ac.uk, d.p.long@dur.ac.uk

Abstract

Domain-independent planning concentrates on the
general algorithmic issues raised in exploring a
search space generated in finding sequences of state-
transition functions between an initial state and a
goal state. It is acknowledged that domain-dependent
planning, in which features of specific domains are ex-
ploited in this search, offers opportunities for more ef-
ficient planning, but at the price of greater effort in the
domain-encoding. The work presented in this paper
is concerned with giving a domain-independent plan-
ner access to certain kinds of domain-specific heuris-
tics without the need for additional domain encod-
ing effort. This is achieved by automatically iden-
tifying generic types from STRIPS planning domain
descriptions. Generic types are higher order types
allowing the categorisation of domains (and compo-
nents of domains) into domain classes, including the
commonly occurring transportation domain class. We
show how the generic type structure of domains can
begin to be exploited to increase planner efficiency.
An interesting property of the work described here
is that domain components which would not easily
be recognised, by the human, as transportation prob-
lems can turn out to have an underlying transporta-
tion character which can be exploited by the appli-
cation of standard transportation domain heuristics.
The analyses described here are completely planner-
independent and contribute to an increasing collection
of pre-planning analysis tools which help to increase
performance of planners by decomposing and under-
standing the structures of planning problems before
planners are applied.

Introduction

Many planning problems feature objects which are mo-
bile and which traverse networks of locations in the
process of transporting non-mobile portable objects be-
tween initial and goal locations. Logistics, Gripper,
Ferry and others are examples of domains in which
this character is explicit and obvious to the human do-
main designer. We call these standard transportation
domains. Transportation is such a common feature of
planning problems, either as a central or an incidental

component, that it is remarkable that most domain-
independent planners do not attempt to exploit the
feature in improving performance. Probably the key
reason why they do not is that to do so would require
that the planner should recognise the applicability of
appropriate heuristics. This would appear to require
some further effort on the part of the domain engineer
and this runs counter to much of the work in domain-
independent planning which seeks to operate with the
most unadorned declarative domain descriptions and
place the burden of problem-solving firmly on the plan-
ning system itself. There are also examples of domain
components which have an underlying transportation
character but which are not recognizable to the human
domain designer as transportation problems (even if
other components of the same domain have an obvi-
ous transportation character). A specific example, the
PaintWall domain, is considered below.

In this paper we present an extension to TiM (Fox
& Long 1998), a program comprising a range of static
domain analysis techniques, which is capable of un-
covering the transportation elements of a wide variety
of standard and non-standard transportation domains.
This extension is integrated with our Graphplan-
derivative planner (Blum & Furst 1995), STAN (Long
& Fox 1999) and improves the efficiency of STAN by
allowing it to selectively exploit heuristics suited to
transportation domains.

We call these domain elements generic types.
Generic types are higher order types, that is, types
populated by types rather than by domain objects.
Having recognised mobiles and maps we can use them
to prune action instantiations and to identify certain
classes of unsolvable goals without search. The ability
to infer generic types allows STAN to infer the relevance
of a number of domain heuristics not normally avail-
able for exploitation by a planner. The potential bene-
fits of exploiting such information have been illustrated
by Kautz and Selman (Kautz & Selman 1998), who
showed the performance advantages obtained by pro-



viding hand-coded transportation axioms to their SAT-
based planners. Bacchus (Bacchus & Kabanza 1998)
hand-codes similar domain-specific axioms in TLPlan.
The hierarchical planner sHOP (Nau et al. 1999) re-
lies upon domain-specific control knowledge, encoded
in horn-clause logic and used to supplement the declar-
ative description of the domain.

Our analysis exploits the results of the basic type
analysis performed by TIM and can be seen as an ex-
tension of the analysis from basic to generic type in-
ference. We are currently able to infer the existence
of mobiles, portable objects, carriers for portable ob-
jects and maps of locations accessible to mobiles and
carriers. The advantage of the analysis performed
by TIM is that it requires no pump-priming by the
domain designer. The domain description is a stan-
dard STRIPS description which requires no annotation
or other means of identifying characteristic features.
The identification of the relationships that imply the
generic type of an object is independent of the predi-
cate and operator names used in the domain encoding,
and is robust to the ordering of arguments within pred-
icates. Although a domain designer will often encode a
standard transportation domain using indicative pred-
icate and object names, such as at, which suggests situ-
atedness, and holding, or in, which suggest conveyance,
the use of suggestive names cannot be relied upon for
the automatic extraction of such structure from a do-
main description. Many transportation domains are
non-standard in the sense outlined above, and complex
domains may contain transportation sub-components,
which even the domain designer has not recognised, or
highly interconnected ones which require a number of
unobvious predicates to encode.

The results of our analysis can be used in several
ways by a planner. It is possible to use the generic
types to filter operator instantiations by excluding in-
stantiations which relate mobile objects to locations
on maps which they cannot traverse or which relate
portable objects to mobiles which cannot be carriers
for the particular portable. These instantiations could
not be excluded using basic types alone. The generic
types make dependencies explicit which are not visible
at the basic type level. Using basic types it is possible
to exclude instances which require objects of type truck
to be situated at objects of type package (obviously
not well-typed), but not to eliminate instances which
require trucks to be situated at locations which are not
accessible to them. The analysis can also be used to
detect unsolvable problems before attempting to plan
for them. For example, a goal which places a mobile
object at a location which is unreachable for that type
of mobile, or which will give rise to sub-goals that do

0, can be identified as unsolvable. We can also use the
analysis to identify situations in which certain domain-
specific heuristics can be exploited without loss of com-
pleteness. For example, the standard transportation
heuristic which states that an object should never be
collected from its destination or deposited at its start
location (both BLACKBOX (Kautz & Selman 1998) and
TLPlan(Bacchus & Kabanza 1998) exploit this in the
Logistics domain) can lead to incompleteness if used in
any transportation domain in which objects can play
roles other than simply being moved from one place
to another. For example, keys in the Grid world are
required for opening doors as well as being the objects
that are moved between locations. The heuristic can
safely be used if it can be inferred that the domain
has a pure transportation character - that is, there are
no features of the mobiles or the portables that could
interfere with the simple transportation goals of the do-
main. We have experimented with the use of generic
types to reduce the number of action instances and to
reduce search where it can be inferred that the struc-
ture of the domain safely allows it. The results of these
experiments are reported below.

The Basic TIM Analysis

The analysis described in this paper exploits the re-
sults of the basic type analysis performed by Tim (Fox
& Long 1998). TIM automatically infers a rich type
structure and a collection of invariants from an un-
adorned STRIPS domain description. In (Fox & Long
1998) it is shown that the inferred type structure en-
ables STAN to prune action instances and obtain a sig-
nificant speed-up in the plan generation process.

In the basic analysis of TIM a domain is viewed
as a collection of Finite State Machines (FSMs) with
domain constants traversing the states within them.
States correspond to collections of properties. A prop-
erty is a projection of a proposition onto one of its ar-
guments, denoted by the predicate name subscripted
with the argument position being considered. For ex-
ample, in the Rocket domain (Blum & Furst 1995)
there are rockets and packages, with rockets being ca-
pable of being at; locations and of moving, by driving,
from being at; one location to being at; another, and
of being fuelled; or unfuelled;, and of moving between
these two states. at; can be seen as forming a one-
node FSM, and fuelled; and unfuelled; as forming a
two-node FSM. This view is depicted in Figure 1.

Packages can be at; locations or in; rockets, and can
move between these states in the resulting two-node
FSM. In this example, rockets can be in states that
involve more than one FSM, since they can be both
aty and fuelled;, or aty and unfuelled;. The predicates



drive load

g ® o ©

unload
drive

O

Figure 1: FSM depicting state transitions in the
Rocket domain

in the initial state, and on the add and delete lists of
operator schemas, provide TIM with a way of associ-
ating domain constants with FSM transitions, and are
used to form property and attribute spaces which parti-
tion the domain constants into a type structure. Each
property space describes the properties that are ex-
changed during the state transitions that can be made
by the associated domain objects. The exchanges of
properties that are possible are described by rules in-
cluded in the property spaces. A rule is of the form
enablers = start — end where the enablers are proper-
ties an object must have to be able to make the tran-
sition and start and end are the properties lost and
gained in the exchange, respectively. For example, the
rule fuelledy = at1 — aty is generated in the Rocket
domain. Attribute spaces describe the properties that
are acquired or lost, without exchange, when an object
makes a state transition. For example, a location loses
the property of having an object situated at it when
that object moves, but it gains no other property in
exchange for the one lost. The construction and use of
property and attribute spaces is fully described in (Fox
& Long 1998).

The property and attribute spaces provide the basis
for the inference of a collection of invariants which can
be used to reduce effort during the searching phase of
plan generation. They also provide the foundation for
the extended analysis described in this paper.

The Extended Analysis

The extended analysis performed by TiM involves the
identification of mobile objects and the maps of loca-
tions upon which they move. It also identifies portable
objects and carriers for those portable objects. We
now describe the processes by which these generic
types are inferred.

Inferring the Existence of Mobiles

The first phase in our analysis is concerned with iden-
tifying mobile objects. A mobile object is defined to be
one that can make a self-propelled transition from be-
ing situated in one location to being situated in another

location. Any domain description that contains mo-
biles will include a predicate for expressing the current
situation of a mobile. For example, the predicate at
might be used to express the fact that truck? is situated
at city1-2 in a standard Logistics encoding. The fact
at(truckl,cityl-2) expresses the situation of an explicit
mobile object, the truck. We call the predicate in this
fact an at-relation, because it expresses situatedness,
but the name of the predicate is not important. For
example, in the Mystery domain (McDermott 1998)
(which is an encoded transportation domain) the fact
craves(rest,flounder) expresses the situation of the mo-
bile rest at the location flounder'.

It might seem obvious that at(truckl,cityl-2) ex-
presses the situation of an explicit mobile object, and
even that craves(rest,flounder) does, once the Mystery
domain is decoded. However, there are domain be-
haviours that the human observer would not charac-
terise as being of the transportation type and yet which
can be revealed to be analogous to the standard trans-
portation domains. An example is the PaintWall do-
main, consisting of several decorators, walls and paints.
Figure 6 gives the two domain operators: a paint oper-
ator allows walls to be painted from one colour to an-
other and a go_to_wall operator allows a decorator to
move from one wall to another. A set of constraints de-
termines which colours can be applied on top of which
other colours. For example it is generally necessary
for a wall to be primed and undercoated before it can
be painted in the desired colour. Light paints can-
not be placed over dark ones and some surfaces re-
quire paint-stripping before any other colours can be
applied. There might be surfaces which, once applied,
can never be removed. To complicate matters, not all
paints need be suited to all walls. This feature of the
domain, which can be found in the simple example of
an initial state for the domain in Figure 7, requires
careful examination to determine.

At first sight PaintWall might appear to be a stan-
dard transportation domain in which the decorators
are mobile and the walls form the locations between
which they move. However, this observation alone
would not provide the planner with any exploitable
structure, since the network of walls is completely con-
nected (a decorator can move freely between any pair
of walls) so there is no action pruning or search re-
duction implied. However, our analysis reveals that in
fact the walls are mobile, traversing a network of loca-

'In the Mystery domain pleasures (including rest) en-
code robots, while foods (including flounder) encode loca-
tions. The craves predicate encodes situatedness while feast
is the move operator and eats encodes accessibility between
locations.



load

R
drive

unload

Figure 2: FSM depicting state transitions of cars and
transporters: cars may be loaded into transporters and
carried, or may drive separately.

tions formed by the paints! The edges in this network
are given by the accessibility relation between pairs of
paints. The analysis is also able to recognise the pres-
ence of mobile objects moving on a totally connected
network of walls. STAN can exploit the detection of the
walls as mobile very effectively, as our results demon-
strate. The primary advantage is that STAN can avoid
constructing action instances which would paint walls
with unsuitable colours. The worked example below
shows how this is done. As this example shows, the
generic type analysis of a domain can assist the plan-
ner in distinguishing meaningful sub-types (in this case
two sub-types of walls) and their associated behaviours
within that domain. Similarly, in Logistics, our anal-
ysis can distinguish the sub-type of trucks moving on
locations in city! from the sub-type of trucks moving
around city2.

The starting point for the detection of mobiles is
the identification of property spaces denoting FSMs
comprising self-connected nodes formed from single
properties. For example, in the FSM in Figure 2 the
component denoting the at; property exchange reveals
the presence of mobile objects in the collection of do-
main objects associated with the corresponding prop-
erty space. TIM performs sub-space analysis to identify
the subset of objects, in the property space, that can
traverse this FSM component. Actually all of the ob-
jects can make the at; — aty transition, but only the
cars can make the at; — iny,iny — at; transitions.
As we explain below cars can be inferred to be both
mobile and portable objects because of being able to
make both kinds of transition. The transporters can
be inferred to be the carriers for the cars.

In the description so far we have assumed that the
at-relation, indicating the presence of mobiles, is a two-
place predicate in which one of the arguments is the
mobile itself and the other is the location at which
it is situated. Although this is a limiting assumption
it is a reasonable one and true of all of the bench-
mark domains. Qur current failure to detect other,
more complex, mobiles (such as ones for which the at-
relation has more than two arguments, for example

for each property space, P
for each rule in P, r

if r is of the form e = p — p

where p is a property that appears in a singleton
state in P

and p corresponds to an arity 2 predicate, pred

then construct a new mobile collection, M;
associate r with M;
put the objects in P into M;
mark the other argument of pred as a location type
record pred as the “at” relation of P;

for each subspace, S
for each rule in S, r
if r is of the form e = p — p
where p is a property that appears in a singleton
state in P
and p corresponds to an arity 2 predicate, pred
then if r is already associated with a mobile collection, M
then if M is already refined
then contruct a related mobile collection, M’;
associate M’ with M;
put the objects in S into M’;
else replace the objects in M with
objects from S;
mark M as refined;
else construct a new mobile collection, M;
put the objects in P into M;
mark the other argument of pred as a location

type
record pred as the “at” relation of P;
mark M as refined;

Figure 3: Pseudo-code algorithm for detecting mobile
objects in a planning domain description.

at(robot,room1,fuel2), encoding the situatedness of a
mobile with a given fuel level) does not compromise
the soundness or utility of our existing analysis. We
are also able to recognise the presence of implicit mo-
biles, encoded in predicates. For example, in Gripper,
the fact at_robby(rooml) refers to an implicit mobile
(the robot) and the location of that robot at room1.
Our analysis recognises one-place predicates as poten-
tial at-relations and is able to report the presence of
implicit mobiles.

Figure 3 gives a pseudo-code description of the
mobile-identification part of our analysis in property
spaces and sub-spaces. The key observation regarding
sub-spaces is that this analysis refines the analysis of
the parent spaces, identifying subsets of mobile objects
amongst a larger collection in the parent space.

Inferring the Maps Associated with the
Mobiles

Mobiles traverse maps consisting of connected loca-
tions. Each mobile type uses a move schema to perform
the transition. The name of the schema is not signif-
icant: whichever schema produces a at — at rule is
identified as a move schema, for that mobile type. The
locations they can visit depend on the mobile type. For



LOGISTICS DRIVE-TRUCK OPERATOR T ,_»‘Ci)mponem

(:action DRIVE-TRUCK @
:parameters (?M ?F ?T ?C) \
:precondition / o 3
(and (truck ?M) (location ?F) (location ?T) i In-city ]

(at ?M ?F) (in-city ?F 7C) 4

(in-city ?T 2C)) ) —
:effect (and (at 2M ?F) (not (at ?M ?7F)))) In-city

Figure 4: Connected component from the drive_truck
operator in Logistics.

example, in Logistics encodings, the mobile type truck
can traverse the roads linking locations in their respec-
tive cities, whilst the mobile type airplane can traverse
the flight paths linking airports. Furthermore, in stan-
dard Logistics encodings trucks can only traverse the
city networks that are accessible to their initial loca-
tion. Part of the process of identifying mobiles is iden-
tifying the maps they traverse. We do this by identify-
ing map links in the preconditions of the relevant move
schema. A map link is formed by one or more static
connectivity relations indicating a direct link between
two locations. The identification of maps involves the
recognition of certain static relations as significant in
determining the connectivity of the map.

The identification of maps relies upon the ability to
determine the source and destination locations of a mo-
bile transition. The source and destination of a tran-
sition are identified by finding the location argument
in the at-relation on the preconditions and add-lists,
respectively, of the move schema for that mobile. We
construct a graph in which the nodes are the variables
referred to by the operator schema and edges link pairs
of variables that appear in the same preconditions in
the schema. Having constructed the graph we identify
the connected components which contain each of the
source and destination variables. Collections of pre-
conditions in the schema which refer only to variables
in these connected components form map links in the
location map traversed by the mobile. We exclude the
mobile at-relation from the graph construction process,
as we want to prevent the mobile itself from being used
to identify map links except in the case where the map
is dependent, in some way, on the mobile. Figure 4
indicates the result of map-inference in the Logistics
domain. In this example the map-link is the proposi-
tion:

AC - location(F') A location(T)
Nin_city(F, C) A in_city(T,C)

and the map consists of all ways of satisfying this
proposition for F' and T'. Map inference can be done in
exactly the same way when the mobile itself is implicit

(raction TRAVEL
:parameters (?T ?X ?Y)
:precondition (and (borders 7X ?7Y)
(at 7T 7X)
(has-visa ?T ?Y))
:effect (and (at ?T ?Y)
(not (at ?T ?7X))))

Figure 5: The travel operator

in the operator schema.

An example of a domain in which a dependent map
would be derived is the following Traveller domain.
Travellers can only enter countries they have visas for,
so that the map of countries associated with a traveller
is dependent upon the visas held by that traveller. The
travel operator in Figure 5 contains a has_visa precon-
dition which enables this dependency to be detected by
the map construction process. The relevant map-link
is:

3T - borders(X,Y) A haswvisa(T,Y)

The map consists of all ways of satisfying this proposi-
tion for X and Y, and the question of whether a given
traveller can traverse any specific link in the map is
then determined by whether that traveller has a visa
for the Y location.

Our current analysis has blindspots that we are cur-
rently addressing. First, our analysis would not, at
present, recognise as mobile any object which had to
pass through an intermediate state in the process of
getting from a to b. For example, a frog which could
only get from one riverbank to another by using a lily-
pad as a stepping-stone would not be seen as mobile.
We use the presence of intermediate states to indicate
that some third party is involved in the transporta-
tion of the object and that it is not, therefore, fully
self-propelled. However, in this example, the lilypad
is not in any sense transporting the frog. Secondly,
the assumption that at-relations will always be one- or
two-place is restrictive. It is possible to anticipate do-
main encodings in which an at-relation might also have
arguments indicating levels of available resources, or
other features. For example, the fact that an object is
at a location and that that object has fuel available to
it, might be wrapped up in a single predicate such as
at_with_fuel(object,location,boolean). We currently re-
quire this property to be broken down into the two dis-
tinct ones at(object,location)) and fuelled(object). Al-
though this assumption does not seem unreasonable,
and it is in fact the convention for STRIPS modelling,
it is possible to see the mobile as moving in a multi-
dimensional space defined by the other arguments to
the at-relation.



(raction PAINTWALL
:parameters (?D ?X ?F ?T)
:precondition (and (painted ?X ?F)
(have ?T)
(can-cover ?T ?F)
(by-wall ?D ?7X))
:effect (and (painted ?X ?T)
(not (painted ?X ?F))))
(:action GO_TO_WALL
:parameters (?D ?F ?T)
:precondition (and (by_wall ?D ?F)
(wall ?T))
:effect (and (by_wall ?D ?T)
(not (by_wall ?D ?F))))

Figure 6: The operators from the PaintWall domain

(define (problem paintwall)
(:init (have wood-undercoat) (have wood-primer)
(have wood-white) (have wood-blue) (have wood-stripper)
(have metal-primer) (have metal-undercoat)
(have metal-white) (have metal-blue) (have metal-stripper)
(can_cover wood-undercoat wood-primer)
(can_cover wood-white wood-undercoat)
(can_cover wood-blue wood-white)
(can_cover wood-blue wood-undercoat)
(can_cover wood-stripper wood-blue)
(can_cover metal-undercoat metal-primer)
(can_cover metal-white metal-undercoat)
(can_cover metal-blue metal-white)
(can_cover metal-blue metal-undercoat)
(can_cover metal-stripper metal-blue)
(wall kitchen-wall) (wall warehouse-wall)
(by_wall decorator kitchen-wall)
(painted kitchen-wall wood-blue)
(painted warehouse-wall metal-blue))

Figure 7: A small initial state for the PaintWall do-
main.

A Worked Example of Mobile and Map
Inference in the PaintWall domain

The PaintWall domain features the two operators in
Figure 6. Given these, the basic analysis performed
by T1M identifies the following FSMs. The processes by
which these FSMs would be constructed is summarised
in Section and fully described in (Fox & Long 1998).
The painted; FSM describes an unassisted state
transition and is therefore recognised, by the extended
analysis, as indicating the presence of an explicit mo-
bile collection containing all of the objects that can

paintwall go_to_wall

Figure 8: FSM depicting state transitions of walls and
decorators.

Component

’ \
; .
! \

N can-cover /

Figure 9: Connected component analysis from the
paint operator in PaintWall. The nodes in the con-
nected component are used to identify the map-link
for map construction. The collection of preconditions
in the schema (in Figure 6) refering to these nodes will
be conjoined to form the map-link.

make the transition from one painted; property to an-
other. These are the objects of type wall — the only
type associated with the property space defined by this
FSM. The move operator for these mobiles is the paint
operator which generated the rule painted, — painted, .
Similarly, the decorators are identified as mobile on the
map of walls (so walls are both locations and mobile
on their own map).

The next stage in the analysis is to identify the maps
of locations that the two mobile collections use. In
the PaintWall case exclusion of the at-relation from
the construction of the connected components reveals
can_cover and have to be the only map-link predicates.
Figure 9 shows the process by which the connected
component, which forms the basis for the inference of
the map traversed by the wall mobile, is constructed
in the PaintWall domain. The inferred map-link is the
proposition:

can_cover(T, F) A have(T)

and the map consists of all possible ways of satisfying
this proposition by binding 7" and F'. The map loca-
tions traversed by the walls are the paints. There are
two components in the map defined by this relation
for the example give in Figure 7. These components
are isolated from one another — no wall can cross from
one component of the map to the other. Our analysis
sub-divides the walls into two mobile sub-types, one
associated with each of the two components. Mem-
bership of the two sub-types is determined simply by
path-existence from the starting locations of the walls
in the two components. This observation can be used
to dramatically reduce the number of action instances
that would be built by a planner without recourse to
this analysis. The network traversed by the decora-
tors, which is inferred by analysis of the go_to_wall op-
erator, is uninteresting in this sense since it is totally
connected.



load

g ®

~_

unload

Figure 10: FSM indicating the presence of portable
objects

Inferring the Existence of Portable
Objects and their Carriers

Transportation domains are characterised by the pres-
ence of objects which will be transported between lo-
cations by some, or all, of the mobiles in the domain.
In a typical transportation domain there may be con-
straints that imply that only a subset of the mobiles
can be carriers for particular kinds of portable objects
(heavy objects might need to be transported by special
carrying equipment, for example).

Our algorithm for inferring the existence of portable
objects begins by looking for FSM structures which
indicate that any transition in the location of associ-
ated objects must pass through an intermediate state
involving a self-propelled (mobile) object. In Logis-
tics, packages would be detected as portable because
changes in their at; properties require them to pass
through an in-relation with an mobile, indicating their
transportation by a third party. Figure 10 shows the
relevant FSM structure, inferred by TIM from the Lo-
gistics operator schemas. The first task is to identify
the in-relation and establish the producing schemas
for the at — in and in — at transitions. The pro-
ducer for the at — in transition is the load schema
and the producer for the in — at transition is the un-
load schema. The in-relation appears on the add-list
of the load schema and on the delete-list of the unload,
and it has both a portable argument and, in the case
of explicit carriers, a carrier argument. We assume
that portables are always explicit. Domain objects are
made implicit by encoding them in predicates with cor-
responding dedicated operators. This is only feasible
if there are few such objects, and whilst there is of-
ten only one mobile in a benchmark domain there are
generally many portables.

It is possible for a collection of domain objects to
be seen as both mobile and portable if that collection
can perform both an unassisted state transition and an
assisted one. This situation occurs for the cars in the
domain described by the FSM in Figure 2. In Gripper
the pick schema is inferred to be the load operator,
and drop is inferred to be the unload. The in-relation

is holding. In Ferry, embark and debark are the load
and unload operators and on is the in-relation. In Mys-
tery, overcome and succumb are the load and unload
schemas, and fears is the in-relation. The existence of
a two-state FSM of the form depicted in Figure 10 is
not automatically indicative of the presence of porta-
bles. It is necessary for the at-relation to be associated
with a location which appears on the map of some
mobile that can be interpreted as the carrier for the
portable and the in-relation to link the portable to a
mobile. For instance, in a domain with lightswitches
that can be turned on and off TIM would generate a
similar two state FSM to that in Figure 10. However,
the properties in the states would not be linked to lo-
cations and mobiles, so the lightswitches would not be
seen as portable.

When portables have been extracted the identifica-
tion of their associated carriers is quite straightfor-
ward. We identify as the carrier the mobile that is
situated in the same location as the portable, in the
case of the load, and in the destination of the portable
in the case of unload, and which appears as the carrier
argument to the in-relation. We do not currently deal
with the case where multiple carriers are needed. If the
carrier is implicit and the preconditions mention mo-
biles that must be present for loading or unloading to
take place, then the analysis will not, at present, iden-
tify the carrier. For example, if a security guard must
be present to witness the loading and unloading of the
portable into, and out of, an implicit carrier then the
carrier cannot be reliably identified. In all cases where
the analysis cannot be definitive, it defaults, gracefully,
to standard behaviour.

So that we can identify candidate carriers and the
locations between which they move, mobile objects are
inferred before portables in our algorithm. Space lim-
itations prevent a fuller description of the algorithms:
a detailed description is in preparation.

Results of Initial Application of the
Generic Types Analysis

In this section we present the results of using the mo-
bile extraction analysis to prune action instantiation
in our Graphplan-based planner STAN. This repre-
sents only preliminary use of the analysis but illus-
trates the potential for benefit offered by this form of
pre-planning analysis. All experiments were performed
on a PII-300 PC with 128 Mb of RAM, running Red
Hat Linux version 5.2. All timings are elapsed time
measurements in milliseconds. We have presented re-
sults obtained from standard benchmark domains for
ease of comparison.

The ability to relate different mobile types with the



LOGISTICS
18000 T T

16000

14000 [

12000 [

10000

8000 [

6000 [

4000

STAN

2000 [

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
STAN+

MYSTERY
9000 T T

8000 [

7000 [

6000 [

5000 [

4000

3000 [

2000 [

STAN

1000 -

) 500 1000 1500 2000 2500 3000 3500

STAN

Figure 11: Results derived from Logistics and Mys-
tery demonstrating a comparison between STAN and
STAN+ (STAN with generic type inference) on ATPS-98
competition data sets.

60000

GRIPPER

STAN: —
STAN ----

50000
40000
30000 -

20000 -

10000 - i // 4
0 L L L L
2 5

7000

MSec

6000 [

5000 [

4000

3000 [

2000 [

STAN

1000

Figure 12: Results derived from Gripper and
Ferry demonstrating a comparison between STAN and
STAN+. These domains have implicit mobiles.

location maps upon which they can move enables a sig-
nificant reduction in the number of well-typed action
instances. For example, any attempt to move, load or
unload a mobile object to, from or at a location not
accessible to it, is not well-typed. The generic type
inference is done before action instantiation, and in-
forms the process of instantiation by associating, with
each schema, the mobile objects from which the mo-
bile argument in the schema can be instantiated and
the locations accessible to these objects on their maps.
If a schema has no mobile argument then either the
mobile is implicit in that schema, in which case only
the accessible locations are supplied, or the situation
of mobiles is irrelevant to the schema, in which case
STAN defaults to its standard instantiation process on
that schema. In Logisitics, in which there are several
disconnected maps traversed by different sub-types of
the truck mobile, we have been able to solve problems
not previously solvable by STAN. Figure 11 illustrates
the comparative performances of STAN without generic
type analysis and STAN with this analysis (STAN+) on
a collection of 6 Logistics problems from the ATPS-98
competition data set. In this graph the solid line in-
dicates equal performance and points above the line
indicate an advantage for STAN+. STAN+ was able to
solve an additional problem, problem 17, in 8 seconds,
which could not be solved with available resources by
STAN. Problem 4 was solved by STAN+ in 25 seconds,
and by STAN in 42 seconds, but this point was not in-
cluded in the graph because it would have obscured
the other data.

The recognition that the domain is a transportation
domain, together with the observation that objects
in the domain play no other role than to be trans-
ported, enables STAN+ to exploit a heuristic which
prunes load instances, that load portables from their
final destinations, and wunload instances that unload
portables at their initial situations. This is a powerful
general heuristic which is one of the key performance-
enhancing heuristics supplied by Kautz and Selman
to SATPLAN in (Kautz & Selman 1998). Kautz and
Selman supply this heuristic as a hand-coded, domain-
specific, axiom. The heuristic exploited by STAN+ is
domain-independent, in the sense that STAN+ can ex-
ploit it whenever it is able to infer the appropriate
domain structure without explicit instruction from the
domain engineer. All of the data sets illustrated here
were generated using this heuristic, since they are all
pure transportation domains. It must be emphasised
that the decision to use the heuristic is made automat-
ically, by STAN+, not by the user manually configuring
the behaviour of the system.

The Gripper and Ferry domains both have implicit



mobiles. In these domains there is no benefit to be
obtained simply by excluding action instances that
refer to unreachable locations because all locations
are reachable by the mobiles. The dramatic perfor-
mance benefits demonstrated by the graphs in Fig-
ure 12 derive from combining the symmetry machin-
ery, described in (Fox & Long 1999) and implemented
in both STAN and STAN4, with the heuristic described
above. It should be noted that this combination al-
lows STAN+ to solve optimally all 20 of the competi-
tion Gripper problems. In the competition only 4 of
these problems were solved optimally by any of the
planners. This explains why the data in Figure 12 is
presented as two separate data plots for this domain,
rather than as a single comparative plot as for the other
domains. The Ferry domain has similar characteristics
to Gripper and benefits from the same combination of
analyses.

The PaintWall domain presented in this paper was
given as an example of the potential for our generic
types analysis in a non-standard transportation do-
main. The PaintWall instances in which the identifica-
tion of mobiles yield an advantage are those in which
the map, traversed by the mobiles, is split into two
or more disconnected components. The following for-
mula gives the exact number of action instances pruned
when there are n map components, where the ith com-
ponent has e; edges and m; mobiles that traverse it.

n n
Z(mi- Z €i)
i=1 j=1,j#1

For example, in the instance presented in Figure 7 the
number of actions pruned will be 10, out of the total ac-
tion instance set of 22. Figure 13 shows the number of
action instances generated by STAN with and without
generic type analysis in a selection of instances from
the AIPS 98 competition data set.

Related Work

The integration of domain-specific mechanisms into
domain-independent planning has been considered in
a few contexts: Srivastava and Kambhampati (Srivas-
tava & Kambhampati 1999) show how a planner can
exploit resources in the generation of plans. They ob-
serve that, as resources increase, planning becomes
harder because of the corresponding increase in the
number of ways to allocate those resources. Their work
demonstrates that the separation of the resource allo-
cation from the planning process improves the plan-
ning performance. However, this separation is not au-
tomatic as it relies on annotation of the domain de-
scription by hand.

Logistics Mystery

Prob. With GT No GT Prob. With GT No GT
1 336 1368 1 102 186

2 946 3600 2 608 3680
3 2150 16156 3 608 1856
4 3210 26013 4 130 252

5 326 2205 5 552 3096
6 3671 72648 6 5544 14454
7 1678 8690 7 204 1128
8 3823 >66580 8 2430 6372
9 6273 62260 9 512 2408
10 6668 46460 10 3132 42174
11 1366 4680

12 11559 99441

13 13627 >45037

14 7551 73216

15 1536 10539

16 5843 36751

17 2624 19700

18 24340 >89100
19 14574 >79296
20 20069 >87615

Figure 13: Number of action instances generated by
STAN with and without generic types analysis: where
a lower bound is given the instantiations overflowed
512Mb of memory.

Automatic pre-planning domain analysis has alos
been previously explored by several researchers.
Koehler (Koehler 1998) uses an automatic pre-
planning analysis to assist IPP by identifying subprob-
lems, representing milestones in the planning process,
which can be ordered to avoid some search. However,
this analysis renders IPP incomplete for optimal plans
in some domains so cannot be safely exploited fully au-
tomatically. Nebel, Dimopoulos and Koehler (Nebel,
Dimmopoulos, & Koehler 1997) provide 1PP with a
number of configurable options to allow the user to
select filters (RIFO) which eliminate irrelevant facts
and objects from the domain prior to instantiation of
actions.

Fully automatic pre-planning analyses have also
been explored. Porteous and McCluskey (McCluskey
& Porteous 1997) have used automatic pre-planning
analysis of domains encoded in their object-centred
language, OCL, to identify goal orderings and macro-
operator sequences. Gerevini and Schubert (Gerevini
& Schubert 1996), Scholz (Scholz 1999), Kelleher and
Cohn (Kelleher & Cohn 1992) and Fox and Long (Fox
& Long 1998) carry out domain invariant extraction for
the purpose of supplementing the reasoning processes
of the planner. Refanidis (Refanidis & Vlahavas 1999)
and Geffner and Bonet (Geffner & Bonet 1998) pre-
process planning domains to extract search heuristic
functions which they then use to inform a variation on
the A* search strategy. Howe et al. (Howe et al. 1999)
have begun to explore automatic planner selection on



the basis of suitability to particular domain structures.
This is based on a quantitative measurement of the ex-
tent to which a particular problem fits the profile of a
particular planner, using a detailed empirical and sta-
tistical analysis of the candidate planners.

Conclusion

The work described in this paper extends the fully au-
tomatic strand of pre-planning analysis by stepping
back from analysing the incidental properties of indi-
vidual domains and instead looking for the defining
characteristics of certain classes of domains. Classify-
ing domains according to their characteristic features
(such as the presence of transportation components)
allows the automatic invocation of heuristics suited to
the appropriate class of domains. We have shown how
the classification of domains as pure transportation do-
mains allows the use of a domain specific heuristic that
dramatically improves the performance of the planner
on these domains.

The identification of higher order types provides
us with the potential to perform more precise type-
checking than can be managed using the basic type
structures inferred by TiM, allows us to invoke more
powerful invariants than can currently be inferred to
be relevant by any other automatic technology and to
identify certain unsolvable goals without planning. We
have so far shown that the results of our analysis can
improve the performance of planners by enabling dras-
tic pruning of incorrectly typed action instances and
the elimination of search along paths which, because
of the nature of the domain, can be inferred to lead
necessarily to dead ends. We are currently working
on extending our analysis to capture more sophisti-
cated notions of mobility and portability and consid-
ering new ways to exploit the information in the search
process itself.

References

Bacchus, F., and Kabanza, K. 1998. Using temporal
logic to express search control knowledge for planning.
Technical report, University of Waterloo, Canada,
ftp:/ /logos.uwaterloo.ca/pub/bacchus/BKTlplan.ps.

Blum, A., and Furst, M. 1995. Fast Planning through
Plan-graph Analysis. In IJCAL

Fox, M., and Long, D. 1998. The automatic inference
of state invariants in TIM. JAIR 9.

Fox, M., and Long, D. 1999. The detection and
exploitation of symmetry in planning problems. In
Proceedings of the International Joint Conference on
Artificial Intelligence.

Geffner, H., and Bonet, B. 1998. High level plan-
ning and control with incomplete information using
POMDPs. In Proceedings of AIPS-98 workshop on In-
tegrating Planning, Scheduling and Ezecution in Dy-
namic and Uncertain Environments.

Gerevini, A., and Schubert, L. 1996. Accelerating
Partial Order Planners: Some Techniques for Effec-
tive Search Control and Pruning. JAIR 5:95-137.

Howe, A.; Dahlman, E.; Hansen, C.; Scheetz, M.;
and von Mayrhauser, A. 1999. Exploiting compete-
tive planner performance. In Proceedings of the F'ifth
European Conference on Planning, Durham, UK.

Kautz, H., and Selman, B. 1998. The role of domain-
specific axioms in the planning as satisfiability frame-
work. In Proceedings of AIPS-98, Pittsburgh, PA.

Kelleher, G., and Cohn, A. 1992. Automatically Syn-
thesising Domain Constraints from Operator Descrip-
tions. In Proceedings ECAI92.

Koehler, J. 1998. Solving complex planning tasks
through extraction of subproblems. In Proceedings of
AIPS-98, Pittsburgh, PA.

Long, D., and Fox, M. 1999. The efficient implemen-
tation of the plan-graph in STAN. JAIR 10.

McCluskey, T. L., and Porteous, J. 1997. Engineering
and Compiling Planning Domain Models to Promote
Validity and Efficiency. Artificial Intelligence 95(1).

McDermott, D. 1998. PDDL — the planning domain
definition language. Technical report, Yale University,
http://www.cs.yale.edu/users/mcdermott.html.

Nau, D.; Cao, Y.; Lotem, A.; and Mufioz-Avila, H.
1999. SHOP: Simple hierarchical orederd planner. In
Proceedings of the International Joint Conference on
Artificial Intelligence.

Nebel, B.; Dimmopoulos, Y.; and Koehler, J. 1997.
Ignoring irrelevant facts and operators in plan gener-
ation. In Proceedings of ECP-97, Toulouse, Fr.

Refanidis, I., and Vlahavas, I. 1999. GRT: A domain
independent heuristic for STRIPS worlds based on
greedy regression tables. In Proceedings of the Fifth
European Conference on Planning, Durham, UK.

Scholz, U. 1999. Action constraints for planning.
In Proceedings of the Fifth Furopean Conference on
Planning, Durham, UK.

Srivastava, B., and Kambhampati, S. 1999. Planning
though separate resource scheduling. In AAAT Spring
Symposium on Search Strategy under Uncertain and
Incomplete Information.





