Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

A technique for the quantification of human and non-human mammalian mitochondrial DNA copy number in forensic and other mixtures

Tobe, Shanan S. and Linacre, Adrian M.T. (2008) A technique for the quantification of human and non-human mammalian mitochondrial DNA copy number in forensic and other mixtures. Forensic Science International: Genetics, 2 (4). pp. 249-256. ISSN 1872-4973

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The number of mitochondria per cell varies by cell type and the number of mitochondrial DNA (mtDNA) genomes varies per mitochondrion. Biological samples from unknown species are encountered frequently in forensic science investigations and are often contaminated with human mtDNA making analysis difficult. Currently, no techniques to quantify non-human mtDNA are available. We report on a method to accurately quantify, sensitive to 100 copies (1.7 fg), mtDNA from human and non-human sources when present as a mixture. The test developed uses the cytochrome b (cytb) and the ribosomal 12S genes on the mitochondrial genome. Universal and human specific fragments of similar size are amplified and quantified using SYBR Green. We validate the test with 24 human samples and 27 non-human mammalian samples. The human fraction of a sample can then be subtracted from the universal fraction for an accurate estimation of non-human mtDNA copy number.