Utilizing Automatically Inferred Invariants in Graph Construction
and Search

Maria Fox and Derek Long
University of Durham, UK
D.P.Long@dur.ac.uk,Maria.Fox@dur.ac.uk

Abstract

In this paper we explore the relative importance of
persistent and non-persistent mutex relations in the
performance of Graphplan-based planners. We also
show the advantages of pre-compiling persistent mutex
relations. Using TIM we are able to generate, during
a pre-processing analysis, all of the persistent binary
mutex relations that would be inferred by Graphplan
during graph construction. We show how the efficient
storage of, and access to, these pre-processed persis-
tent mutexes yields a modest improvement in graph
construction performance. We further demonstrate
that the process by which these persistent mutexes
are identified can, in certain kinds of domain, allow
the exploitation of binary mutex relations which are
inaccessible to Graphplan. We present The Island of
Sodor, a simple planning domain characterizing a class
of domains in which certain persistent mutexes are
present but are not detectable by Graphplan during
graph construction. We show that the exploitation of
these hidden binary mutexes makes problems in this
kind of domain trivially solvable by STAN, where they
are intractable for other Graphplan-based planners.

Introduction

Graphplan (Blum & Furst 1995) has become an impor-
tant example of efficient classical planning technology.
The algorithm operates by constructing a data struc-
ture, the planning graph, which is a compressed form of
the reachable states in a planning problem, and then
by searching backwards using an iterated depth-first
search to explore the reachable states and find a plan.
An important elements in this algorithm is that the
compression of reachable states ensures that the plan
graph is feasible to construct, even for quite complex
planning problems. The price paid for the compression
is that the data structure loses differentiation between
pairs of reachable states, by taking the union of all
the collections of propositions in states reachable by
equal length plans. This differentiation is not entirely
lost, however, since the algorith maintains a collection
of binary mutex relations between pairs of facts show-

ing which pairs cannot be true together in the same
state (that is, they are mutually exclusive). The algo-
rithm uses these fact mutex relations to induce similar
mutex relations between actions which might be ap-
plied to progress from one state to another. This pa-
per explores the nature of the binary mutex relations
constructed by Graphplan-based planners and differ-
entiates between persistent and non-persistent mutex
relations.

It has been observed before (Smith & Weld 1999;
Long & Fox 1999) that mutex relations constructed by
Graphplan behave monotonically — they can first oc-
cur between a pair of facts at the first stage at which
the two facts are both reachable, and will then either
remain mutex at each subsequent level, or else lose the
mutex relationship with one another. Two facts can
never start non-mutex and subsequently become mu-
tex since if they can occur in the same state then they
will always be able to appear in the same state, if only
by virtue of persistence of that state. Persistent mu-
texes are mutual exclusion relations which can be iden-
tified to hold between pairs of propositions, or pairs of
actions, and which do not get removed as the graph de-
velops. These relations capture aspects of the logical
structure of the domain. They include permanent mu-
tex relations indicating conflicts between the precon-
ditions and effects of actions (referred to here as PAD-
mutexes). Non-persistent mutexes express mutual ex-
clusion relations which decay as the graph lengthens
and capture the temporal requirements of solutions to
given goal combinations. That is, certain pairs of facts
can only occur in the same state once some combina-
tion of events has been brought about, so that each
fact may be made separately true much sooner than
the combination can be achieved: this situation can
yield a non-persistent mutex relation between these
facts between the first state at which both are sep-
arately achievable and the state at which they may
both be achieved together.

We have performed a number of experiments to de-

termine the relative significance of these different types
of relation. Our experiments indicate that persistent
mutexes tend to predominate, often by a very large
margin, in the standard benchmark domains. We con-
structed a version of STAN in which only persistent mu-
texes were built during graph construction, and found
that failure to even construct non-persistent mutexes
had virtually no effect on planning performance on
many problems in these domains. We found that PAD-
mutex relations are not the critical ones in determining
the solvability (or otherwise) of problems. The most
significant class of mutex relations appears to be the
class of persistent, non-PAD, mutex relations.

In this work we have been interested in identifying
what kind of mutex relations Graphplan-based plan-
ners benefit from the most and whether there are in-
ferrable mutual exclusions that are not accessible to
the Graphplan graph-construction process. An initial
hypothesis was that the persistent non-PAD mutex re-
lations could be pre-compiled into an efficient represen-
tation, to avoid their repeated recomputation in the
graph construction phase, and that this would yield
an improvement in graph construction performance.
Since profiling shows that over fifty per cent of re-
sources are typically spent in graph construction it ap-
peared that this could be quite significant. A second
hypothesis was that a class of domains could be con-
structed in which the pre-compilation of these mutex
relations could make binary mutexes accessible which
would not otherwise be accessible to Graphplan-based
planners. We constructed a range of experiments to
test these hypotheses, the results of which are reported
in detail below. In summary, we have been able to
demonstrate that the use of pre-compiled mutex rela-
tions, whilst having only a limited advantage for graph
construction, can have a massive impact on search,
making the difference between problems being solvable
or not solvable in a certain class of domains.

Pre-compiling Persistent Mutex
Relations

Persisent mutex relations correspond to logically in-
variant properties of the domain. We are able to
pre-compile the non-PAD mutexes using the TIM sys-
tem (Fox & Long 1998), which automatically infers a
collection of invariants from STRIPS domain descrip-
tions using a collection of static analysis techniques.
As we describe in (Fox & Long 1998) TIM is able to
infer four different kinds of invariant: identity invari-
ants (for example, no two objects can be at the same
place at the same time), unique state invariants (ev-
ery object must be in at most one place at any one
time), state membership invariants (every object must

be in at least one place at any one time) and resource
invariants (there are exactly 4 surfaces in the 3-blocks
world). The first two of these correspond to intensional
representations of collections of persistent mutex rela-
tions. For example, the (indicative) identity invariant
above is an intensional representation of the collection
of mutex relations that would be inferred to hold be-
tween at(a,d) and at(b,d), at(a,d) and at(c,b), etc., for
distinct a,b and ¢ within a layer of the graph.

The inferred invariants can be used to compile, dur-
ing the pre-processing stage, a look-up table of per-
sistent mutual exclusions that can be consulted very
efficiently to determine persistent mutex relationships
during the graph construction process. The identifica-
tion of these mutexes as persistent means that there
is never any need to reconsult the look-up table with
respect to a given pair of propositions, or actions, once
they have been identified as persistently mutex. In
standard Graphplan there is no distinction between
persistent non-PAD and non-persistent mutex rela-
tions. Thus Graphplan builds, at each layer of the
graph, an extensional representation of both the in-
variant and time-dependent structures of the domain
without distinguishing between the two forms of bi-
nary relation. This means that the same persistent
mutex relations are repeatedly re-inferred, which is
unnecessarily expensive. Analysis of the standard do-
mains (Gripper, Logistics, Mystery, etc.) revealed that
Graphplan infers all of the mutexes that follow from
each of the four forms of invariant inferred by TIM, so
it might be concluded that there is little, other than
a small saving in graph construction, to be obtained
from deriving them during pre-processing. However
this is, in fact, not the case.

In our experiments we have observed that non-
persistent mutex relations can decay prematurely dur-
ing the Graphplan graph construction process. A sim-
ple example of this is a domain in which there are
three cities, two of which have packages located at
them and the third of which has a truck located at
it. If the goal is to have both of the packages at the
third location, then the shortest plan involves six steps:
three sequential moves, two sequential loads and two
parallel unloads. It is impossible for the goal to be
achieved in fewer steps. However, Graphplan infers
that the goals can be achieved together by level 5 of
the graph. This is because the preconditions for the
two packages to be both at the same destination by
level 5 are that they both be in the truck at level 4
and that the truck be at the destination. There is a
3 step plan which will get the truck, loaded with ei-
ther package, to the destination. There is also a 4 step
plan which will have the truck loaded with both pack-

ages, although not at the destination. This means that
Graphplan will not find any mutex relations between
any pair of the preconditions required for the packages
to be unloaded at their destination by level 5. The
problem lies in the fact that the binary mutex rela-
tion between the packages both being at the destina-
tion by level 5 rests on a ternary “mutex” relation be-
tween the facts in(packagel,truck), in(package2,truck)
and at(truck,destination), which Graphplan does not
detect. This requires Graphplan to begin searching for
a plan from level 5 when it is impossible for one to be
found until level 6 has been constructed. Graphplan
will discover the mutex relation by searching the graph
and failing to find a plan, which is a much more ex-
pensive route to finding the relation than to construct
it from the outset. This example is very simple and
the penalty for Graphplan is very small, but in larger
examples we have found that Graphplan invests signif-
icant effort in finding mutex relations which it failed
to discover by construction. Our observation that pre-
mature decay can occur posed the question of whether
non-PAD persistent mutexes might also apparently de-
cay in the Graphplan plan graph. Graphplan treats
these mutexes as though they can decay so it seemed
in principle possible, even though we were unable to
identify a benchmark domain in which this occurred.
This led us to work on the construction of a domain
which would force Graphplan to lose non-PAD persis-
tent mutexes and have to resort to search to rediscover
them.

The Island of Sodor domain, described below, pro-
vides an example of such a domain. Because of its
exploitation of the pre-compiled mutex relations de-
rived from TIM’s invariants STAN finds problems in this
kind of domain trivial, although they are intractable
for other GraphPlan-based planners.

Storing and Accessing Persistent Mutex
Relations

In order to infer invariants TIM first constructs finite
state machines, called property spaces, which capture
the behaviour of the distinct types of objects that can
traverse the states within them. The process by which
this is achieved is described in detail in (Fox & Long
1998) and sumarised very briefly here.

Central to the analysis conducted by TIM is the no-
tion of a property, which is formed by combining a
predicate and an index to one of its argument posi-
tions. This property is said to belong to values which
can occupy the corresponding position in some valid
proposition in the domain. T1iM begins its analysis by
projecting the behaviour of each operator schema for
each argument that the schema contains. That is, the

{left,right} {balll,ball2,ball3,ball4}

pick pick

drop drop

Figure 1: FSMs built by TIM for the Gripper domain.

preconditions and postconditions of each schema are
examined and, for each argument, the properties that
the object has in the pre- and postconditions of the
schema are identified. An operator therefore gener-
ates rules for each of its arguments, indicating how the
properties of the objects to which they refer change as
a consequence of application of the operator. A rule
will specify the properties the object loses and which it
gains. There can also be properties which merely en-
able the transition, without being affected by it. Some
rules allow properties to be gained without a corre-
sponding loss, or to be lost without a corresponding
gain: these rules are called attribute rules. Attribute
rules and the properties they affect are ignored in the
analysis discussed here, although they can have other
roles in analyses carried out by TIM. Properties which
are only affected by non-attribute rules defined small
finite-state machines (FSMs) in which the states are
bags of properties held by objects in reachable states
of the planning domain. The rules are the transitions
between these states. Subsets of the objects in the
planning domain will make transitions on FSMs ac-
cording to whether they start, in the initial state, in
one of the legal states associated with the FSM. A
simple example of FSMs built by TiM for the Gripper
domain (a simple domain in the ATPS’98 competition
data set) is shown in Figure 1.

It can now be observed that two propositions are
persistently mutex if they are associated with proper-
ties that appear in the same FSM but their predicates
never occur as properties of the same object in the
same state. Any object which traverses an FSM can-
not simultaneously have two properties that appear in
the FSM, but never in the same state. For example,
in Gripper, balls can make the transition from being
at a room to being held in a gripper (holdings), but
the properties at; and holdings can never be simul-
taneously true of any one ball. Thus, at and holding
are persistently mutex when they are talking about the
same ball.

During the pre-processing analysis performed by
TIM a collection of persistent mutex relations is con-

create a square matrix, M, of lists, initially all empty,
with dimension equal to the number of
dynamic predicates in the language;

for each property space, P,
for each pair of properties in P, p and g,
if [p, q] is not included in any
state in P
then split p into its predicate,
pp, and its index, pi;
split ¢ into its predicate,
qq, and its index, gi;
add (pi, gi) to the list
at M|pp, qq];
add (gi,pi) to the list

at M(qq, ppl;

Two facts, A = a(z1,...,zn) and B = b(y1, -, Ym),
are permanently mutex if:
not (A = B) and for some entry, (3, j),
in Mla,b], z; = y;

Figure 2: The pseudo-code for generation and use of
the mutex matrix in TIM.

structed. This collection is stored in a matrix and when
STAN compares two propositions to determine whether
they are mutex this matrix is indexed into by the la-
bels of the two propositions being compared. Each
cell in the matrix stores a list of pairs, each pair con-
taining the corresponding arguments that must be the
same for the two propositions to be mutex. There is
a list because there may be alternative ways in which
two propositions can be mutex. The arguments ref-
erenced by a pair might be in the same position in
the two propositions, as in the pair (1,1) (this will
be the case, for example, for mutex relations inferred
from identity invariants), but they need not be. For
example, as discussed above, the properties at; and
holding, are persistently mutex (in the Gripper do-
main) if they refer to the same ball. Thus, the matrix
indexed at [at, holding] contains the pair (1,2), since
the ball appears in the first argument position in at
and in the second position in holding. On the other
hand, packages in Logistics can be either at; or ing,
and these states are mutually exclusive. TIM infers the
pair (1,1) for the matrix entry indexed at [at,in] in
this case. Thus, comparing two propositions to see
if they are mutex involves consulting the matrix and
then comparing the arguments at the designated posi-
tions. Figure 2 contains a pseudo-code algorithm for
constructing the matrix from the property spaces built
by TIM in the first phase of its analysis.

The construction of the matrix is done during the
preprocessing phase and requires time O(n*) in the
worst case, where n is the size of the domain encoding.
This follows because the number of properties, identi-
fied by TIM, is linear in the size of the domain encoding
and, in the worst case, for each of the O(n?) pairs of
properties there is at most O(n?) work to determine
whether they appear in the same bag within their iden-
tified property space. In practice the process is very
fast, requiring only a few miliseconds. This is because
there are generally few properties in each space, dra-
matically reducing the cost of the analysis. For exam-
ple, if the size of the property spaces is bounded by
a constant (which seems typical) the analysis only re-
quires time linear in the size of the domain encoding.
This analysis is not unrealistic since, as domain com-
plexity increases, it is typical that type differentiation
improves and the individual behaviours remain at a
similar level of complexity.

Others have examined the automatic generation
of domain invariants, including (Gerevini & Schu-
bert 1998; 1996a; 1996b; Morris & Feldman 1989)
and (Kelleher & Cohn 1992). Some of this work
has been exploited in the construction of data struc-
tures encoding domains in preparation for planning:
(Gerevini & Schubert 1998) and (Gerevini & Schubert
1996a) in particular explore this. Graphplan has been
seen as a different way of constructing domain invari-
ants, using an extensional rather than intensional rep-
resentation. The work presented here can be seen, in
part, as a comparison of the effectiveness of Graph-
plan’s inference strategy and that used by TIM.

The Island of Sodor

It is straightforward to construct domains in which ob-
jects can enter collections of states, characterised by
groups of properties, in which any pair of properties
can appear together, in a state, but the whole group
cannot appear together in any state. This situation
gives rise to multiple mutual exclusions between col-
lections of the properties in the group, even though
there are no binary mutex relations between the prop-
erties in these collections. The simplest example of
this situation is the one depicted in Figure 3. Here,
objects can move between the states [p] and [g,r], [p]
and [g, s] and [p] and [r, s] but the properties ¢, 7 and
s are ternary mutex. The ternary mutex relation ob-
scures the fact that, starting from an initial state in
which no object has more than one p-derived prop-
erty, no object that traverses this state space can have
more than one p-derived property at any time, since
p-derived properties are always exchanged for pairs of
the other properties. In fact, Graphplan is unable to

©
Figure 3: The presence of ternary mutex relations.

maintain the binary mutual exclusion between distinct
occurrences of p in the fact layers built as the graph de-
velops because it is unable to recognise the effect of this
ternary mutex relation. In order to experiment with
this example we designed the Island of Sodor domain,
the simplest domain we could identify that exhibits the
ternary mutual exclusions just described.

The Island of Sodor! is a STRIPS planning domain
in which a number of engines transport cargos between
locations on a rail network. The rail network is a sim-
ple topography of one-way rails. The locations include
the Top Station, the quarry, the docks, Gordon’s Hill
and several others. Engines can be involved in trans-
portation tasks or they can be in the process of being
cleaned, refuelled and rewatered. There are only suf-
ficient personnel available to enable any two of these
operations to be performed for each engine at any time,
so an engine can be cleaned and refuelled, cleaned and
rewatered or refuelled and rewatered. When these op-
erations are in progress the engine is not recorded as
being at any of the locations on the rail network. It
is taken off-line for these maintenance operations and
brought back on-line again at their conclusion. Fig-
ure 4 presents seven of the nine operators of this do-
main and Figure 5 shows an example initial state of
the rail network.

The domain was constructed to demonstrate the way
in which certain persistent mutex relations are lost in
the graph construction phase of Graphplan. The op-
erator schemas consist of a move schema which moves
engines from a to b, three maintenance schemas, clean-
and-refuel, clean-and-rewater and refuel-and-rewater,
which take engines off-line in order to clean and refuel,
clean and rewater or refuel and rewater them (respec-
tively) and three corresponding recommission schemas,
which take engines from maintenance to being on-line
at any location (and therefore at that location). In
the initial state engines are placed at the various sta-
tions on the rail network, or are off-line. In the plan

!The Island of Sodor is the setting of a famous se-
ries of children’s books, involving anthropomorphic steam
engines.

(:action move
:parameters (?engine ?from ?to)
:precondition (and (inServiceAt ?engine ?from)
(rail-link ?from ?to))
(inServiceAt ?engine ?to)
(not (inServiceAt 7engine ?from))))

:effect (and

(:action load
:parameters (?engine ?cargo ?location)
:precondition (and (inServiceAt ?engine ?location)
(at ?cargo ?location))
(in ?cargo ?engine)
(not (at ?cargo ?location))))

:effect (and

(:action unload
:parameters (?engine 7cargo ?location)
:precondition (and (inServiceAt ?engine ?location)
(in ?cargo ?engine))
(at ?cargo ?location)
(not (in 7cargo 7engine))))

:effect (and

(:action clean-and-refuel
:parameters (?engine)
:precondition (inServiceAt ?engine top-station)
:effect (and (refuelling ?engine)
(cleaning ?engine)
(not (inServiceAt ?engine top-station))))

(:action clean-and-rewater
:parameters (?engine)
:precondition (inServiceAt ?engine top-station)
:effect (and (rewatering ?engine)
(cleaning 7engine)
(not (inServiceAt ?engine top-station))))

(:action refuel-and-rewater
:parameters (?engine)
:precondition (inServiceAt ?engine top-station)
:effect (and (rewatering ?engine)
(refuelling 7engine)
(not (inServiceAt ?engine top-station))))
(:action recommission
:parameters (7engine)
:precondition (and (refuelling ?engine)
(cleaning ?engine))
(inServiceAt ?engine top-station)
(not (refuelling ?engine))
(not (cleaning ?engine))))

:effect (and

Figure 4: The Island of Sodor operators schemas. Only
one of the operators for recommissioning is given here
- the other two are symmetric with this one, but using
the other pairs of services available to an engine.

Thomas

Top Station Gordon’s Hill City

Airport

Engine shed

Docks

Quarry Village

Figure 5: The Island of Sodor - a typical configuration

Figure 6: The initial section of the plan graph obtained
from an Island of Sodor instance in which there is a
single engine and adjacent locations Top-Station and
Gordons-Hill.

graph constructed from an initial state in which there
is a single engine, Thomas, at the Top-Station, the fact
pairs at(Thomas, Top-Station) and cleaning(Thomas),
at(Thomas, Top-Station) and rewatering(Thomas) and
at(Thomas, Top-Station) and refuelling(Thomas) will
be binary mutex at fact layer 1. No other pairs of
facts will be mutex at this level. The initial section of
Figure 6 depicts the state of the plan-graph at layer
1. At the next level the fact at(Thomas, Top-Station)
can be obtained by re-commissioning following clean-
ing and refuelling. The facts refuelling(Thomas), rewa-
tering(Thomas) and cleaning(Thomas) can be main-
tained by no-ops, as shown in Figure 6. Finally, at
layer 3, at(Thomas,Gordons-Hill) can be obtained by
a move from the Top Station (assuming that they
are adjacent in the initial state), and at(Thomas, Top-
Station) can be obtained by re-commissioning follow-
ing refuelling and rewatering. Now the two at relations
are binary non-mutex. Graphplan has lost the persis-
tent mutual exclusion between at relations because the
three-way relationship between cleaning, rewatering
and refuelling hides the binary exclusion that holds be-
tween the (implicit) compound elements cleaning-and-
rewatering and inServiceAt, refuelling-and-rewatering
and inServiceAt and cleaning-and-refuelling and inSer-
viceAt. STAN cannot recognise these hidden binary
relations either, but STAN has access to the graph-
independent invariant structure of the domain which
allows it to retain the knowledge that all pairs of dis-
tinct at relations are binary mutex.

Empirical Results

We performed a range of experiments on a collection
of benchmark domains (the AIPS-98 competition set)
and on our Island of Sodor domain in order to test our
initial hypotheses. All experiments were performed un-
der Linux RedHat 6.0 on a 500 MHz Celeron PC with
128 Mb of RAM. We constructed four versions of STAN
for comparison: STAN is our most recent release (ver-
sion 4). STAN- is STAN without the pre-compilation of
persistent mutexes. STAN-NP does not construct non-
persistent mutex relations, leaving it to the searching
phase to identify these constraints. STAN+4PAD con-
structs only PAD-mutexes, leaving search to identify
all other constraints.

70000

60000 - g
50000 [- 4

40000 |- ,

STAN

30000 - ,
20000 4

10000 P B
P

-

0

L L L L L L
0 10000 20000 30000 40000 50000 60000 70000
STAN-

Figure 7: Modest advantage obtained from pre-
compiled persistent mutexes in the AIPS-98 compe-
tition Logistics and Mystery problems.

We compared STAN and STAN-, on a collection of
problems from the ATPS-98 competition domains, to
determine the extent to which exploitation of pre-
compiled persistent mutexes affects the performance
of the graph construction phase. Figure 7 shows that
a modest, but consistent, advantage is obtained in two
standard benchmark domains. Tests were carried out
on other domains showing similar performance. We
have not been able to find any problems in the bench-
mark domains for which there is a significant impact
on overall performance deriving from the graph con-
struction saving. STAN- uses the conventional Graph-
plan strategy of recomputing persistent non-PAD mu-
texes at each layer in the graph. Since Graphplan is
able to construct, extensionally, all of the mutex rela-
tions available for extraction from the TIM invariants
the modest scale of the saving obtained by STAN is
unsurprising. There is no possible advantage to be
gained over STAN- during search. The saving that is
obtained is explained by the work that no longer needs
to be done on recomputation of this class of mutex rela-
tions. However, the intensional representation of these
mutexes must still be built, so that the basic overhead
incurred by their construction is similar in both STAN-
and STAN.

Figure 8 demonstrates the effects of not building
non-persistent mutex relations during graph construc-
tion. We compared STAN-NP with STAN on the same
benchmark domains and problems. For most of the
problems considered we found that no significant dis-
advantage was suffered by STAN-NP. For example, all
of the competition Gripper problems remained solv-
able with no noticeable effect on performance. Ex-
amination of the relative proportions of persistent to

20000
I
18000
16000
14000
12000

10000

STAN-NP

8000
6000 -
4000 - *

2000

+ -
e
4—"'* L

0 L L L L L L L
0 1000 2000 3000 4000 STAN5000 6000 7000 8000 9000

Figure 8: STAN compared with STAN-NP showing
that performance remains broadly similar when non-
persistent mutexes are not inferred in the construction
phase.

non-persistent mutexes constructed by STAN revealed
that non-persistent mutexes make up only a very small
proportion of the inferred mutex relations, typically
accounting for fewer than five per cent of the whole
mutex collection. It therefore seems plausible that the
extra search overhead incurred by not building these
exclusions during graph construction could be insignif-
icantly small. However, in a few cases (two problems in
Logistics and six in Mystery) the failure to build non-
persistent mutexes made problems unsolvable. This is
very difficult to explain, given that the relative pro-
portions of non-persistent mutexes remain as low as in
the other problems. Further, we encountered one prob-
lem (Logistics problem 5 from round 2) which STAN-
NP solved faster than STAN having constructed fewer
non-persistent mutexes during search than STAN con-
structed, despite STAN having built the accessible non-
persistent mutexes during graph construction. STAN
identified a further 519 mutexes in the search phase,
finding a plan in 59 seconds, whilst STAN-NP identified
only 433 and found the same plan in 33 seconds. It
must be noted that the extra mutexes are binary bad
goal sets found by Kambhampati’s EBL/DDB mech-
anism (Kambhampati 1999) which we implemented in
(both versions of) sTAN. Non-binary bad goal sets
are ignored. Figure 9 indicates the number of non-
persistent mutex relations that are built during the
search phase by both STAN and STAN-NP.

As can be seen in the table, the number of non-
persistent mutexes found during search by STAN-NP is
very small - indeed, much smaller than the number of
non-persistent mutexes built by STAN during the graph
construction phase. Thus, much of the work done by
STAN in this respect is wasted, because many irrelevant
mutexes are constructed for each important one. STAN-

Problem | STAN | SBs | STAN-NP | SBs
1.1 138 0 134 13
1.2 1148 0 1110 33
1.3 5456 0 - -
1.4 16973 0 - -
1.5 858 42 1064 86
1.7 3867 1 3517 35
1.11 1139 0 1196 8
1.17 6093 0 5347 13
2.1 38 0 37 8
2.2 38 0 37 11
2.3 100 0 92 16
2.4 4140 26 3464 43
2.5 59002 | 519 32869 | 433

Figure 9: STAN compared with STAN-NP on Logistics
problems from rounds 1 and 2. The third and fifth
columns indicate the number of non-persistent mutexes
found, by STAN and STAN-NP respectively, during the
search phase.

NP often benefits from not having to construct these ir-
relevant mutexes, as can be seen from the performance
figures. Our implementation of STAN-NP was not op-
timized for taking advantage of the reduced obligation
during graph construction so it is possible to anticipate
a much greater saving than the figures already sug-
gest. Since STAN is finding additional non-persistent
mutexes during search in four of the Logistics problems
(although none of the Mystery or Gripper problems)
it can be concluded that there is scope for improving
the coverage, by Graphplan-based planners, of the non-
persistent mutexes during the construction phase. As a
final observation it is interesting to note that the per-
formance of STAN-NP on identifying unsolvable prob-
lems is significantly worse than that of STAN. This
suggests that building non-permanent mutexes during
graph construction is of particular importance in iden-
tifying unsolvable problems without search.

Figure 10 shows the effects of only building PAD-
mutex relations during graph construction, leaving all
other constraints to be discovered during the search
phase. As might be expected, the performance of
STAN+PAD is very poor, except on trivial problems
where it seems not to suffer significantly. Of the 29
Mystery problems solved (or proved unsolvable) by
STAN only 12 were solved (or proved unsolvable) by
STAN+PAD. Of the 13 Logistics problems only 4 were
solved by STAN+PAD. It is of interest to observe that
the number of mutex relations (of all non-PAD kinds)
identified during search is consistently very low. This
does not imply that the thousands of mutexes built

Problem | STAN | STAN+PAD | Search binaries
Log 1.1 138 27618 207
Log 2.1 38 40 58
Log 2.2 38 41 55
Log 2.3 100 268 76
Myst 1 23 22 15
Myst 3 104 86 11
Myst 7* 36 37 0
Myst 9 87 128 55
Myst 11 50 507 80
Myst 18%* 1140 821 0
Myst 19 639 1974 103
Myst 25 25 23 6
Myst 26 471 997 147
Myst 27 131 118 16
Myst 28 31 72 62
Myst 29 62 56 14

Figure 10: STAN+PAD on Logistics and Mystery prob-
lems. The starred problems are provably unsolvable.

by STAN in its construction phase are useless. Indeed,
these constrain search sufficiently to make some prob-
lems solvable that are not solvable when the search is
unconstrained. Even in cases where STAN+PAD solves
the problem the inference of mutexes in the construc-
tion phase, by STAN, reduces the size of the search
space that must be explored by STAN to discover the
same information. QOur observations lead us to con-
clude that PAD-mutexes have a less pronounced ef-
fect on performance than non-PAD persistent mutexes,
since the inclusion of the latter has such a dramatically
positive effect.

Figure 11 demonstrates the advantages obtained by
STAN over STAN- in the Island of Sodor domain. The
advantage is derived from the pre-compilation of non-
PAD mutex relations which prevents them from being
obscured by the ternary mutexes, exhibited by the do-
main, which cannot be identified by either planner. In
STAN- the binary mutex relations that persist between
pairs of at goals are lost early in the graph construc-
tion process, so that STAN- is quickly submerged in
search. On the other hand, STAN is always able to ac-
cess the pre-compiled information that distinct at goals
are persistently binary mutex.

Conclusions

References

Blum, A., and Furst, M. 1995. Fast Planning through
Plan-graph Analysis. In IJCAL

Problem | STAN- | STAN
1 - 166
2 45 38
3 534 78
4 45 19
5 - 33
6 60 15
7 9008 24
8 584 19
9 - 746
10 - 315
11 - 427
12 - 352

Figure 11: STAN compared with STAN- on problems in
the Island of Sodor domain.

Fox, M., and Long, D. 1998. The automatic inference
of state invariants in TiM. JAIR 9.

Gerevini, A., and Schubert, L. 1996a. Accelerating
Partial Order Planners: Some Techniques for Effec-
tive Search Control and Pruning. JAIR 5:95-137.

Gerevini, A., and Schubert, L. 1996b. Computing
Parameter Domains as an Aid to Planning. In AIPS-
96.

Gerevini, A., and Schubert, L. 1998. Inferring state
constraints for domain-independent planning. In Pro-
ceedings of AAAI-98, Madison, WI

Kambhampati, S. 1999. Improving Graphplan’s
search with EBL and DDB techniques. In Proceed-
ings of IJCAI-99.

Kelleher, G., and Cohn, A. 1992. Automatically Syn-

thesising Domain Constraints from Operator Descrip-
tions. In Proceedings ECAI92.

Long, D., and Fox, M. 1999. The efficient implemen-
tation of the plan-graph in STAN. JAIR 10.

Morris, P., and Feldman, R. 1989. Automatically De-
rived Heuristics for Planning Search. In Proceedings
of the 2nd Irish Conference on Artificial Intelligence
and Cognitive Science, School of Computer Applica-
tions, Dublin City University.

Smith, D., and Weld, D. 1999. Temporal Graphplan
with mutual exclusion reasoning. In Proceedings of
IJCAI-99.

