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Abstract

It is well-known that planning is a hard combinatorial problem but it is less well-known
how to approach the hard parts of a problem instance effectively. Using static domain analysis
techniques we have been able to identify certain combinatorial optimization sub-problems, within
planning problems, making it possible to abstract these sub-problems from the overall goals of
the planner and deploy specialised technology to handle them in a way integrated with the
broader planning activities. Our hybrid planner, STAN4, participated successfully in the ATPS-
2000 planning competition.

1 Introduction

The philosophy underlying our work on domain analysis is that knowledge-sparse planning can only
be proposed as realistic general planning technology if it is supplemented by sophisticated domain
analyses capable of identifying structure in a planning domain that can be effectively exploited to
combat search.

In this paper we describe a way of decomposing planning problems to identify instances of
NP-hard sub-problems, such as Travelling Salesman, that are not best tackled by a general search
strategy but are most effectively solved by purpose-built technology. We have been experimenting
with using the automatic domain analysis techniques of TIM[4] to recognise and isolate certain
combinatorial sub-problems and to propose a way in which their solution, by specialised algorithms,
might be integrated with a knowledge-sparse planner. Full descrptions of the processes involved
can be found in [6, 5].

The work described here has been successfully implemented in version 4 of the STAN system
(STAN4) and has proved very promising. STAN4 competed in the ATPS-2000 planning competition



where it excelled in problems involving route-planning sub-problems and certain resource allocation
sub-problems involving a restricted form of resource.

2 Sub-problem Identification

The way in which TIM recognises the presence of combinatorial sub-problems in a planing do-
main builds upon its identification of generic types. Generic types [10] are collections of types,
characterised by specific kinds of behaviours, examples of which appear in many different planning
domains. For example, domains often feature transportation behaviours since they often involve
the movement of self-propelled or portable objects between locations. The recognition of trans-
portation features within a domain suggests the likelihood of route-planning sub-problems arising
in planning problems within the domain.

Another generic behaviour is resource-allocation, one form of which is indicated by the existence
of finite renewable resources which can be consumed and released in units. STAN4 exploited this
kind of resource sub-problem to interesting effect in the Freecell domain in the competition.

Integration of specialised sub-solvers with the search strategy of a planner is easiest to achieve in
a heuristic forward-search-based planner, so we have implemented a forward planner, FORPLAN,
using a simple best-first search strategy. FORPLAN uses a heuristic evaluation function, based on
solving the relaxed planning problem, similar to the approach taken by HSP [2] and Hoffmann’s
FF [7]. Like FF, FORPLAN uses a relaxed version of GraphPlan [1] to compute the relaxed plan
estimate. However, unlike FF, FORPLAN uses a two-part process to compute this estimate. In
FORPLAN the relaxed plan is constructed for the abstracted planning problem - that is, the part
of the planning problem that remains when operators and preconditions relating to the identified
sub-problem have been removed. This gives us only part of the heuristic estimate. The heuristic
estimate is then improved using the calculations performed to estimate the cost of solving the
removed sub-problem. For example, in the case of route-planning abstraction, these calculations
estimate the cost of traversing the routes between the locations that must be visited by any mobile
objects used in the plan.

To calculate a shortest path that visits all of these locations and respects any additional order-
ings imposed by the plan is a variation on a Travelling Salesman problem and cannot be solved
efficiently in general. Instead, we produce an estimate of the cost using a simple nearest-neighbour
heuristic. This is an unsophisticated first attempt at integrating a solver for Travelling Salesman
problems, and does not always perform well. For example, in the STRIPS elevator domain, plans
contain additional ordering constaints requiring the elevator to visit a number of pickup loca-
tions before their corresponding drop-off locations. The simplest solution for the nearest-neighbour
heuristic is to visit all the pick-up locations before any of the drop-off locations, resulting in poor
estimates. When additional constraints of this kind are not present (as in Logistics) this heuristic
gives a better estimate of the cost than a pure relaxed plan estimate can give, since relaxed plan



estimates ignore the fact that a mobile cannot be in two places at once.

Once an action is selected, for addition to the plan, it is checked to determine whether it entails
obligations that must be satisfied by the plan (for example, in route-abstraction, actions in the
abstracted plan entail commitments on mobile objects to reach key locations). If so, a way of
meeting these obligations is proposed. In route-abstraction STAN4 proposes the shortest path
between the current location of the mobile (which is always known in a forward search) and the
required location, which is recorded in the action as part of the abstraction process. At present this
path is precomputed by TIM using Floyd’s shortest paths algorithm [3] on the map inferred from
the initial state. It is not always appropriate to assume that the shortest path is the best one to
follow. TIM can recognise when there are additional domain features which would invalidate this
assumption and prevents the use of route-abstraction in such cases.

Finally, it is necessary to integrate the efforts of the planner and the sub-solver to produce output
in the form of a plan sequence. Once a sequence of steps has been planned STAN4 generates
instantiations of the necessary operators to produce a plan sequence corresponding to standard
format for STRIPS plans.

3 The Hybrid Architecture of STAN4

In order to be able to compete realistically in the competition we needed to be able to report results
for problems that did not have generic features we could recognise. We therefore supplemented
FORPLAN with STAN [9] version 3, yielding a hybrid, STAN4, of two planning strategies and two
(currently simplistic) specialist solvers - one for solving route-planning sub-problems and one for
solving resource-allocation sub-problems.

TIM selects between the two planing strategies according to the structure of the domain. If
the domain contains a recognized route-planning or resource-allocation sub-problem FORPLAN is
invoked. STANS is invoked in all other cases. If FORPLAN is invoked the domain is automatically
modified, to abstract out the route-planning (or resource-allocation) sub-problem, before planning
begins. This process, and its limitations, is described in [6]. A high-level view of the architecture
of STAN4 is presented in Figure 1.

4 Further Work

Although STAN4 has produced some promising results the framework we have used to achieve
integration is somewhat unsophisticated and inflexible. The following weaknesses are currently
being addressed.

TIM only recognises that route-planning abstraction is possible if all mobiles in the domain
are of an appropriate type to enable abstraction under our current assumptions. STAN4 therefore
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Figure 1: The architecture of the hybrid system showing how TIM selects between FORPLAN and
STAN3 depending on the outcome of domain analysis.

abstracts path-planning for all mobiles or none. An important refinement is to allow path-planning
abstraction to be done for appropriate mobiles and not others.

STAN4 can only integrate with one specialised sub-solver, even when there are two or more
combinatorial sub-problems evident in a domain. For example, if a domain involves route-planning
and resource allocation STAN4 must choose just one of them to abstract. At present STAN4
chooses route-planning abstraction because we have made most progress in solving route-planning
sub-problems effectively. An important refinement is to enable integration with more than one sub-
solver. This will involve finding a way to communicate constraints between multiple sub-solvers
and the planner.

The sub-solvers currently integrated with the hybrid are too simplistic and produce poor per-
formance in some domains. An important refinement is to enable proper integration between the
planner and the best available technology for solving combinatorial sub-problems where these arise.
Some of the best solutions to Travelling Salesman are local search algorithms [8] which it would be
interesting to integrate into the hybrid system.

5 Conclusions

We have experimented with the design of a hybrid planning system in which the choice of problem-
solving strategy is made automatically following static analysis of the domain. Our current hybrid
system, STAN4, gave a promising performance in the ATPS-2000 competition, but it is currently
restricted in terms of the kind of sub-problem integration that can be supported.



Our primary goal is to improve integration with specialised solvers, allowing a more sophisticated
profile of sub-problems to be managed. The key idea underlying our hybrid approach is that
planning is not appropriate technology for solving all problems, and that resorting to generic search,
or thrashing between a number of timed strategies, is not an effective way to address such problems.
Instead we are interested in building up a collection of purpose-built strategies for combatting some
of the most commonly occurring combinatorial optimisation problems and making these available to
a planner, together with techniques for recognising where these problems arise in planning domains.
The decision about how to approach a given planning problem can then be made automatically, in
a principled way, by deciding how to view the problem and deploying the most effective technology
to solve it.
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