Extending the Exploitation of Symmetries in Planning

Maria Fox and Derek Long
Dept. Computer Science
Science Laboratories
University of Durham, UK
maria.fox@durham.ac.uk, d.p.long@durham.ac.uk

Abstract

Highly symmetric problems result in redundant search
effort which can render apparently simple problems in-
tractable. Whilst the potential benefits of symmetry-
breaking have been explored in the broader search
community there has been relatively little interest in
the exploitation of this potential in planning. An ini-
tial exploration of the benefits of symmetry-breaking
in a Graphplan framework, by Fox and Long in
1999 (Fox & Long 1999) yielded promising results but
failed to take into account the importance of identi-
fying and exploiting new symmetries that arise dur-
ing the search process. In this paper we extend the
symmetry exploitation ideas described in (Fox & Long
1999) to handle new symmetries and report results ob-
tained from a range of planning problems.

Introduction

Problems in which there are many objects capable of
the same behaviours often exhibit a highly symmetri-
cal structure. This symmetry might be geometric, as in
puzzles like n-queens, indicative of functional identity,
as in problems in which there are many uninterestingly
different objects, or arising as a consequence of redun-
dancy in a physical system. In each case, symmetries
result in wasted search effort because of the prolifer-
ation of effectively identical search branches. Many
authors, for example (Ip & Dill 1996) in the model-
checking community and (Gent & Smith 2000), (Roy
& Pachet 1998) and (Crawford et al. 1996) in the
CSP community, have considered ways of breaking
symmetry and experimented with the effect of this on
search efficiency. Symmetry breaking has not been
much studied in the planning community, although
techniques for recognising and exploiting some of the
symmetry present in planning problems have been de-
scribed (Fox & Long 1999).

In (Fox & Long 1999) it was shown that symmetries
detected in a planning problem could be broken during
the backward search process of a Graphplan-style plan-
ner and that this could yield exponential improvement

in performance. The strategy involved removing ob-
jects from their initial symmetry groups as they were
selected to play specific roles in a plan, and return-
ing them to their symmetry groups on backtracking.
When a choice leads to failure no other objects in the
symmetry group need to be tried, because their sym-
metry with the failed choice means that they too will
lead to failed search effort. The experiments presented
in that paper demonstrate that exponential improve-
ments could be obtained only when objects, having
been removed by selection from their initial symme-
try groups, never entered new symmetry groups, not
present in the initial state of the problem, during the
course of the search. In fact, in general, new symmetry
groups do appear during search as objects move into
new relationships with one another, and the extent to
which this happens has an inverse effect on the benefits
to be obtained from the symmetry-breaking strategy
described in that paper. This can be seen from the
Gripper experiments presented in that paper, where
the exploitation of symmetry yields an order of mag-
nitude improvement in performance but the trend is
still exponential. This is because as balls move from
rooml to room2 they enter a new symmetry group
with respect to room2, but the new symmetry group
is not detected so the resulting symmetry cannot be
exploited by the planner. By contrast, in the simple
TSP experiment exponential improvements were ob-
tained because no new symmetry groups arise during
search.

In fact, the strategy described in (Fox & Long 1999)
can be modified so that new symmetry groups can
be identified and exploited during the search process.
This paper describes the necessary extensions and the
effects on the performance of the planner. The work
described in this paper was implemented by extending
Stan version 3, and we refer to the resulting system
as SymmetricStan. In SymmetricStan the initial sym-
metries are found automatically by examination of the
initial state and the operator descriptions, as in Stan

version 3. The hypothesis is that objects that share
identical initial states, and can make only identical
transitions, are uninterestingly different (functionally
identical). This analysis gives SymmetricStan access
to some, but not all, of the symmetry available for ex-
ploitation in a planning domain. It might be possible
to identify more of the available symmetry by auto-
matic analysis, but we have not yet considered this
potential in detail. The problem of automatically iden-
tifying all symmetries is computationally hard and is
not addressed here. Furthermore, the completeness of
the planner relies on the identified symmetries being
solution preserving. Again, it is too hard to guarantee
this automatically so the guarantee must be provided
offline (it is straightforward to prove that our notion
of functional identity is solution preserving).

This paper is structured in the following way. We
first describe the technical problems of expressing and
exploiting symmetries in a general search context. We
consider symmetry exploitation in the contexts of plan-
ning, solving CSPs and constructing reachability anal-
yses. We then describe the technical aspects of im-
plementing a symmetry exploitation mechanism that
is able to identify and exploit newly arising symme-
tries during the search process, and explain how this
differs from the approach described in (Fox & Long
1999). We then present results demonstrating that our
approach gives us exponential improvements in perfor-
mance in highly symmetric domains, and we demon-
strate the improvements obtained over the results re-
ported in (Fox & Long 1999). Finally, we consider
scope for future developments in symmetry exploita-
tion in planning.

Exploiting Symmetries in Search

The simplest way of understanding the concept of sym-
metry is in a CSP context in which the problem is
expressed as a set of variables each associated with a
domain of values. Search can be seen to take place in
the space of partial assignments, and the choices asso-
ciated with a node correspond to the values available
for assignment to a particular unassigned variable. In
this context we can say that if two values in the do-
main of V, v; and v;, are symmetric then failure of the
assignment of v; to V' implies failure of the assignment
of vj to V. This observation justifies the pruning of
the branch corresponding to the choice of v; as soon
as the choice of v; fails.

When the assignment of some v; is made, to variable
V', v; can no longer be seen as symmetric to the values
it was symmetric to prior to its selection. This sym-
metry can only be regained when the choice is undone
on backtracking. Furthermore, subsequent choices are

X /!

Figure 1: The process by which geometric symmetries
can be exploited in backtracking over queen positions
in an n-queens puzzle (black dots are choices excluded
by symmetries on backtracking).

made in the context of the assignment of v; to V, so
the only symmetries that can be exploited when these
choices are backtracked over are the ones that are ac-
tive in the context of the selection of v;. The n-queens
example presented in Figure 1 shows how symmetries
change between contexts. Before any queens are placed
the board has horizontal, vertical and diagonal symme-
tries (also some rotational symmetries, not depicted).
When the first queen is placed, in the origin, only the
symmetry corresponding to the leading diagonal is ac-
tive in the resulting board position. The second queen
is placed on the board in this context. Now — sup-
pose the resulting board position cannot be developed
to a solution. When the second choice is backtracked
over only the search branch corresponding to the posi-
tion reflected over the leading diagonal can be pruned.
When the first choice is backtracked over all of the
original symmetries can be exploited to prune search.
As can be seen in the figure, this results in the removal
of four choices for this first queen — the bottom right
hand corner is excluded by composition of the horizon-
tal and vertical symmetries.

Gent and Smith (Gent & Smith 2000) discuss the
n-queens problem as an example of one where sym-
metry breaking can yield orders of magnitude gains in
performance in the production of all solutions given a
specific n. They explain how symmetries, hand-coded
by the domain modeller, can be exploited to construct
just one solution from the equivalence class of solutions
defined by the symmetries, and the other solutions ex-
tracted by application of the symmetries to that one
solution. One might expect an exponential improve-
ment in performance to be demonstrated, but in fact
this is not obtained because of failure of the strategy to

maximise the potential for symmetry-breaking in the
search process. In the n-queens situation new sym-
metries not present in the initial board do not arise
because the empty board already contains all avail-
able symmetries in the problem. However, the order
in which variables are considered for assignment does
affect the effectiveness with which these symmetries
can be exploited. For example, when the first queen is
placed on the board all symmetres will be lost, unless
the queen is placed on an axis (as in the figure), and
never regained unless that choice is backtracked over.
However, the placement of the second queen can allow
some symmetry to be recovered. For example, if the
first queen is placed at position (r2,c1) and the second
at position (r3,c4) then rotational symmetry returns to
the board (rotation through 180 degrees). However, if
the second queen is placed in a different column then
no symmetry will arise. Gent and Smith observe that
variable ordering can be significant in determining how
much symmetry can be exploited in the search for a
CSP solution.

Planning domains typically reveal less geometric
structure than puzzles of this nature, but the processes
by which symmetries are broken by the selection of
choices and then reinstated on backtracking are iden-
tical. Fox and Long present the results obtained from
the Gripper domain, depicted in Figure 2, in which
the balls are functionally identical (they all begin in
rooml, end in room2 and are capable of being picked
up and dropped) and the two grippers are also func-
tionally identical (they both start and end empty and
are capable of holding and of being empty). Stan ver-
sion 3 is capable of using these symmetries to prune al-
ternative ball and gripper selections during the search
process (on the grounds that if a plan to move all the
balls to room2 cannot be found, by time-point k, by
picking up balll, then no plan will be found, by time
point k, by picking up ball2). In this domain symme-
tries that are not present in the initial state do arise
during the search process. Figure 3 depicts a symme-
try that arises during the search process that cannot
be exploited by Stan version 3.

The newly arising symmetries can be automatically
detected by, at each state visited in the search process,
examining the configurations of objects that have lost
their initial symmetric relationships. Any objects in
identical configurations in a given state will form a new
symmetric group within that state. In the next section
the precise means by which this analysis is performed
in SymmetricStan will be described. Before progress-
ing to that description it is necessary to provide a more
formal definition of what is meant by a symmetry, and
of how symmetries can be identified from functional

O% OOO rooml room2
OOO
oY O

o O

o 0°

Figure 2: The initial state of a trivial instance of the
Gripper domain, in which all the balls and both grip-
pers are respectively symmetric. The robot can move
between the rooms and the balls can be picked and
dropped.

O% OO rooml room2
OOO
O
o
O °®
O o O

Figure 3: A Gripper state during search, in which some
of the balls have been moved to room2. The black balls
form a symmetric collection not present in the initial
state.

identities in the initial state of a problem.

It is convenient to define a symmetry as a composi-
tion of permutations on values and on variables (one
of which may be the identity permutation). A sim-
ple encoding of the n-queens problem as a CSP can be
constructed in which the variables correspond to col-
umn numbers and the values correspond to row num-
bers. The variables all share the same domain and
the assignment of a value to a variable corresponds to
specifying the row for the position of the queen in that
column. Under this encoding horizontal symmetry can
be expressed as the composition of:

Ti € Tn—it1

with the identity permutation on variables. Vertical
symmetry can be expressed as the composition of:

Ci < Cpn—it1

with the identity permutation on values. Gent and
Smith use a more flexible interpretation of a symmetry
(any one-to-one mapping that is solution-preserving)
but this is highly permissive and prevents the exploita-
tion potential of taking a group-theoretic view of sym-
metries. Indeed, using the definition of symmetries as
permutations closed under composition it is possible

to generate the full collection of n-queens symmetries
from just one rotation and one reflection, whereas us-
ing Gent and Smith’s definition it is necessary to spec-
ify all of the symmetries by hand. The permutations-
based definition also emphasises the relationship be-
tween symmetries in search and symmetry groups in
the group-theoretic sense.

It is not a trivial step to see how the symmetries ob-
tained from functional identity in a planning problem
can be expressed as permutations in this way. In fact,
the permutations exist only implicitly in Stan version
3 and in SymmetricStan. They can be explicitly ob-
tained by first identifying the collections of function-
ally identical objects in the initial state. These col-
lections can then be used to generate all of the sym-
metric propositions and symmetric actions defined by
the domain description. Taking again a CSP view, the
propositions (subscripted by time identifiers to indi-
cate the points at which they would be considered for
assignment during the search process) can be taken to
be the variables in the problem and the actions (again
subscripted by time to indicate when they could be
assigned) can be taken to be the values. Then per-
mutations on the values can be formed by pairwise
swaps, throughout the current assignment, of time-
subscripted actions based on the symmetries between
the objects they manipulate. For example, if balll and
ball2 are functionally identical, and le ft and right are
functionally identical, then

pickupy (balll,left,rooml)
can be swapped with
pickupg (ball2,left,room1)

and
pickupy (ball2, left,room1)

can be swapped with
pickupy (ball2, right, room1)

(where k is the time step at which the action is ap-
plied). By composing these permutations it can be
seen that

pickupy (balll,left,rooml)
can be swapped with
pickupy (ball2, right, room1)

(the rooms are not functionally identical because they
start and end in different states). These pairwise swaps
result in the symmetric assignments that need not be

Figure 4: The first two moves in the 4-queens prob-
lem, eliminating symmetric alternatives (and alterna-
tives ruled out by the rules of the game) in a forward-
chaining search. As soon as a column cannot be filled
the branch fails.

considered during search if a particular value selection
leads to failure.

It is important to observe that the exploitation of
symmetry as described here is not dependent on the
use of backtracking search. The processes described
here can be implemented successfully in a forward-
chaining reachability analysis simply by using a record
of which symmetric alternatives have been tried to
eliminate choices at each level in the forward search.
Figure 4 shows how alternatives can be quickly elimi-
nated in the 4-queens problem.

Recovering New Symmetries in
SymmetricStan

The potential for new symmetry states to arise dur-
ing the search process in the solution of many plan-
ning problems means that the exploitation strategy
described in (Fox & Long 1999) has to be extended to
gain the full benefits of symmetry-breaking. In Stan
version 3 the standard GraphPlan-style (Blum & Furst
1995) backward search through the plan graph was
modified by the addition of two data structures, one
level-independent, called brokenSym, which recorded
whether objects were in or out of their initial sym-
metry groups and one level-dependent, called tried-
Groups, which recorded which collections of symmet-
ric alternatives had effectively been tried once a choice
had been tried and had failed. BrokenSym could be
level-independent because every object that started in
a symmetry group in the initial state could, from then
on, only be either in that group or out of it. Because
of this the brokenSym record could be implemented
as a boolean vector with one entry per domain ob-

ject. The triedGroups structure was level-dependent
because failure of a particular action choice at layer
k does not obviate the need to consider a symmetric
equivalent at layer k 4+ 1 (hence the need to subscript
actions with level numbers in the representation of the
symmetries).

The behaviour displayed by Stan version 3 is that,
as choices are made in the search process, a decreasing
amount of symmetry remains to be exploited. Since no
symmetries not present in the initial state are discov-
ered during the search process this tends towards an
exponentially worsening trend in performance. Sym-
metricStan extends the behaviour of Stan version 3 by
making it possible to identify the important new sym-
metries as they arise during search. This is achieved as
described in the following paragraphs. The description
given here is presented in terms of the modifications
that need to be made to a Graphplan-style backward
search of a plan graph. However, the underlying strat-
egy for recording and exploiting the symmetry status
of objects throughout the search process of a planner
is identical in other planning architectures and can be
implemented in a way similar to that described here.

In SymmetricStan, the data structure recording the
membership of objects in symmetry groups is no longer
level-independent. Objects are no longer either in or
out of their initial groups, they might move between
several different groups throughout the search process.
This membership pattern is level-dependent because
objects make transitions between groups as a conse-
quence of making transitions between states. We re-
quire brokenSym to record, for each object, whether
it is in or out of the symmetry group that it belonged
to before entering the current layer. Thus, if balll was
in the symmetry group of balls in rooml at level k,
and the action of picking up balll is performed at level
k, then balll can be recorded as having left its sym-
metry group at level k — 1. A separate data structure,
symRecords, maintains the symmetry group associated
with each domain object. This can be consulted at any
time in order to discover what symmetry group a given
object belongs to at a given layer in the graph.

SymRecords and brokenSym are in a close relation-
ship with one another. At each layer, [;, in the graph
brokenSym is consulted to ascertain which objects have
left a symmetry group in the transition to /;. For each
such object, o, the collection of active propositions at
l; is scanned to identify the propositions that refer to
o. These propositions, with references to o removed,
are referred to as hulls for o. For example, the propo-
sition (at balll Toom2) produces the hull (at * room2)
for the object balll. The collection of hulls associated
with o can be used as an index into an associative ar-

ray containing the existing symmetry groups and o can
then be correctly associated with its current symme-
try group. This array can be maintained in a level-
independent way. The hull-construction phase, and
the identification of symmetry group membership for
each object, is done when all actions at /; have been
selected.

A subtlety arises when concurrent activities refer to
the same object. The first concurrent action selected
will cause the object to leave its symmetry group.
The second concurrent action selected will not affect
whether the object is in or out of a symmetry group
because the object will have already had its symme-
try broken by the first action. If the second action is
undone, by backtracking, the symmetries of the object
will not be restored — indeed the object symmetries
will only be restored if the first of the concurrent ac-
tions is backtracked over. In this way, a collection of
concurrent actions is handled as a single package of
actions on the object. The symmetry of the object
is affected by selection and de-selection of the whole
package, although the order in which the actions are
selected determines which action has the symmetry-
breaking effect of the package on that object.

The final data structure to consider is the tried-
Groups structure. In Stan version 3 triedGroups was
implemented as an array of the outer shells of ma-
trices, one for each action symmetry group, each one
having dimensions corresponding to the number of po-
tentially symmetric arguments of the actions in that
symmetry group. So, in the Gripper example, since
balls and grippers both form object symmetry groups
in the initial state, but rooms do not, the action sym-
metry group to which pickup(balll,left,room1) belongs
yields a two-dimensional matrix with balls along one
axis and grippers along the other. There are as many
columns and rows as there are balls and grippers re-
spectively, with each column label corresponding to a
single ball and each row label corresponding to a sin-
gle gripper. An extra column and row, labelled (x,*)
is supplied to represent the symmetry groups for balls
and for grippers, respectively. In the matrix entry for
the pickup action group at layer k, a mark in the cell
corresponding to (left, *) means that all balls have ef-
fectively been picked up in the left gripper (that is:
the attempt to pickup balll in the left gripper failed to
reach a solution by layer k, so no other pickup actions
using the left gripper need be considered at this layer).
A mark in (%,balll) means that all grippers have ef-
fectively been tried on balll, at layer k, and a mark
in (*,*) means that no other pickup actions need be
tried at layer k. In Stan version 3 the inner cells in the
matrices were of no interest, since they corresponded

to specific instantiations of the associated action. For
example, a mark in (left, balll) would simply assert
that the attempt to pickup balll in the left gripper had
been tried. This yields no useful pruning information
so these cells were not stored.

In SymmetricStan the triedGroups structures have
a more sophisticated interpretation. Each layer in the
graph still maintains an array of matrices correspond-
ing to the action symmetry groups, and each matrix
has dimensions determined by the number of poten-
tially symmetric arguments. However, in Symmetric-
Stan the columns and rows of the matrices are labelled
by representatives of symmetry groups which need not
be singletons as in the matrices in Stan version 3. Be-
cause the column and row labels now refer to symme-
try groups the inner cells of the matrices become im-
portant, because a mark in (left,balll), for example,
means that all balls symmetric to balll have effectively
been tried in all grippers symmetric to the left gripper.
Figure 5 depicts this situation. It can be observed that
the triedGroups structure is very similar in organisa-
tion to that in Stan version 3, but that the way it is
interpreted is different and its correct use relies upon
the correct maintenance of the associative array asso-
ciating objects with symmetry groups throughout the
search process.

Figure 5 should be read in the following way: the ob-
ject bl loses its symmetry as the search enters layer k
of the graph. Its new symmetry status is identified by
the construction of its hulls and this process identifies
bl as belonging to a symmetry group also containing
b3 and b5. The ball bl is taken to be the representative
for this group. There is no significance in its selection —
any member ball can play this role. It can now be seen
that a mark in the cell corresponding to (left,bl), in
the triedGroups matrix for the pickup actions, is made
when the action pickup(b1,left,room1) is tried and fails.
Since bl is the representative for the group also con-
taining b3 and b5, the same cell would be marked if
pickup(b3,left,room1) had been tried instead, or even
if the pickup had been made using the right gripper
(since left is the representative for the group contain-
ing both the left and right grippers). The matrices in
triedGroups contain entries for all potentially symmet-
ric objects, even though many of these entries will not
be used. This is because the matrices are constructed
before it is known which objects will be representative
of the symmetry groups available at the corresponding
layers.

Results

We have conducted a range of experiments to investi-
gate the effects on planner performance of the exten-

tried b1, b3 and b5 in both
grippers at layer k

SymRecords

. bl | b3

s o[]=]
by b2 b3 b4 b5 left

it | ¢

right

link to syprrecord

through/éssociative

bl leavesits aray,
symmetry
group on
entry to hulls for b1
layer k
hulls define new symmetry group for bl
layer k

Figure 5: The triedGroups matrix for pickup actions at
layer k, indicating that all balls symmetric to b1 have
been tried in all grippers symmetric to the left gripper.

sions described in the previous sections. We compared
Stan version 3 with SymmetricStan in order to discover
the impact of exploiting symmetry groups that are not
present in the initial state of a problem but arise dur-
ing the search process. In order to dispel the concern
that symmetries might cause less significant problems
for forward searching planners we experimented with
FF (Hoffmann & Nebel 2001) to see to what extent its
behaviour is sensitive to problem symmetries. All ex-
periments were performed under Linux on a PC with
1Gb memory and a 1.4MHz Intel processor. We used
FF version 2.2. All times for SymmetricStan and Stan
version 3 include the preprocessing time spent on iden-
tifying functional identities.

Our first experiment compared Stan version 3 and
SymmetricStan on a range of problems from the Grip-
per domain. These results are shown in Figure 7. As
can be seen, Stan version 3 can solve the first five prob-
lems, the largest of which contains 12 balls. Perfor-
mance is degrading by a factor of about 20, leading us
to conclude that Stan version 3 would require in the
order of 64 days to solve the 14 ball problem. Sym-
metricStan solves the whole problem set, to optimal-
ity, exhibiting only a quadratically growing increase in
requirements (in the log-scaled graph the downward
slope of the SymmetricStan curve indicates a polyno-
mial rate of increase).

Stan version 3 already exhibits significant perfor-
mance improvements, in domains containing symme-
try, over raw Graphplan, indicating that the Graph-
plan search strategy, which attempts to find a plan
at every level from the fix-point layer to the solution
layer is sensitive to symmetry and performs badly when
there are many redundant alternatives to explore and

Figure 6: The Airlock domain. Opening a door seals
the previously opened door permanently closed.

the fix-point is many layers away from the solution
layer (this is the case for the Gripper domain). By
contrast, heuristic forward searching planners, such as
FF, are unaffected by symmetries in problems where
the heuristic value of a state is close to its actual value.
In solving these problems FF never has to backtrack
into a state from which it would be forced to perform a
breadth-first search of a large plateau. However, Hoff-
mann (Hoffmann 2001) has shown that the heuristic
function used by FF produces good estimates only in
relatively simply structured problems. As Hoffmann
shows, the Gripper domain is simply structured and
FF is able to solve arbitrarily large Gripper problems
with linear increase in performance requirements.

This does not in any way undermine the impor-
tance of symmetry exploitation, as our next experi-
ment demonstrates. In problems where the heuristic
function used by FF is not able to provide good esti-
mates of value, the ability to handle symmetries could
significantly reduce the sizes of the plateaux that would
need to be explored on backtracking.

We constructed the Airlock domain as an example of
a highly symmetric domain that FF is unable to solve
for the reasons described above. Airlock is an extended
version of the Gripper domain in which there is a chain
of rooms connected by doors. Opening a door causes
the last door to be irrevocably sealed (so the doors are
one-way). The last room is connected by a door to an
air-lock connected to the first room. The problem is to
transport all the cargo stored in the first room into the
last room. FF cannot easily solve this problem because
it is fooled, by the presence of the airlock, into conclud-
ing that the problem remains solvable if the first item
of cargo is moved into the last room before any other
items are moved. In fact, the only solution is to move
all of the cargo into the adjacent room and then keep
moving the cargo room by room until the last room is
reached (the airlock is never used). To find this solu-
tion FF is forced into performing a breadth first search
of all of the orders in which the cargo items could have
been transported. The Airlock domain gives rise to
many new symmetries during search - every one of the

1e+06

" SymmelricSTAN ——
STANV3 --x---
100000 |

10000

1000

Time (Milliseconds)

100

L L L L L L L L L
0 2 4 6 8 10 12 14 16 18 20
Problem Number

Figure 7: Comparison of Stan version 3 and Symmet-
ricStan on Gripper problems (log-scaled).

rooms in the chain provides the opportunity for a new
symmetric collection of cargos. FF cannot, of course,
exploit this feature, but SymmetricStan can.

Figure 8 presents the data we collected for the Air-
lock problem. It can be seen that, although FF per-
forms well (in terms of time consumption — plan qual-
ity is quite poor) on small Airlock problems it scales
very badly. The graph is log-scaled, and the upward
trend of the FF curve therefore indicates that FF’s per-
formance requirements grow super-exponentially with
the increase in instance size (measured as the number
of cargos to be transported). FF was terminated on
the penultimate problem (9 cargos) having exhausted
available memory. By contrast, SymmetricStan solved
all of the problems presented, to optimality, requiring
1.5Mb for solving the problem that defeated FF. The
SymmetricStan curve follows more or less a straight
line, indicating that there is still exponential growth.
We are investigating the reasons for this.

We performed a final experiment to determine con-
sistency of performance of SymmetricStan. We used a
range of Ferry instances containing up to 50 cars. Sym-
metricStan was able to solve all problems with poly-
nomial increases in demands as instance sizes increase.
Stan version 3, which itself provides an exponential im-
provement in performance over raw Graphplan (Fox &
Long 1999), exhibits exponential growth and was able
to solve instances containing only up to 20 cars.

The ShaPer (Guéré & Alami 2001) system presents
an alternative view of symmetries by exploiting sym-
metry in the domain structure rather than at search
time. By pre-planning analysis, some replication in
the domain structure can be identified and removed.
The underlying structure in both Gripper and Ferry
exhibits considerable replication, so we compared Sym-
metricStan with ShaPer on these domains. Interest-

1000

SymmetricSTAN ——
AN

Time (Milliseconds)

0.001
2

Problem Number

Figure 8: Comparison of time requirements of Stan
version 3, SymmetricStan and FF on Airlock problems
(log scaled).

100000 T T T
x SymmetricSTAN —+—
/ STANV3 ---x---

10000 |-

1000 ¥

Time (Milliseconds)

=
S
3

10

L
10 15 20 25 30 35 40 45 50
Problem Number

Figure 9: Comparison of time requirements of Sym-
metricStan and Stan version 3 on Ferry problems (log-
scaled).

ingly, ShaPer is faster than SymmetricStan on the
Gripper data set, solving the largest problem in about
10 seconds (including pre-planning time), but in the
Ferry domain SymmetricStan is faster. The 50 car
Ferry problem is solved by SymmetricStan in 120 mil-
liseconds, and by ShaPer in 5.56 seconds (including
the pre-planning time). Although the ShaPer approach
can be powerful when there is much replicating struc-
ture the SymmetricStan approach has the advantage
that it can be exploited in any domain that contains
any amount of functional identity. The overheads in-
volved in managing the data structures for symmetry
exploitation are small so no significant penalty is paid
when a domain contains no usable symmetries. This
was demonstrated to be the case for Stan version 3 and
it remains the case for SymmetricStan.

In (Fox & Long 1999) Fox and Long describe a prob-

lem encountered with the use of symmetry-breaking in
Stan version 3. When an action combination, o; - - - 0
is tried at layer k, and fails to lead to a solution, sym-
metric action groups containing actions in this com-
bination are marked as tried. No other combination
containing any action, from the tried combination, be-
longing to a tried symmetry group can then be consid-
ered at layer k. The symmetric action can be applied,
but not until layer k£ + 1. This results in some se-
quentialisation of the plan, and the consequent loss of
parallel optimality.

The same behaviour occurs in SymmetricStan with
the consequence that we cannot claim to produce par-
allel optimal plans. When sequentialised, the plans
produced by SymmetricStan are often sequentially op-
timal as in the Gripper and Airlock domains above.
However, Graphplan plans are not guaranteed to be se-
quentially optimal so this side-effect of symmetry can
result in loss of optimality for SymmetricStan. We be-
lieve the plans produced are close to optimal, but we
are currently trying to understand better what guar-
antees can be given.

Conclusion

This paper presents the benefits to be obtained from
proper handling of problem symmetries in the search
behaviour of a planner. Initial work in this area, imple-
mented in the Graphplan-based planner Stan version
3, failed to take into account the fact that, in many
planning problems, symmetries not present in the ini-
tial state of the problem can emerge during the search
process. If these new symmetries are not recognised
and exploited much of the benefits of handling sym-
metries are lost. We have described what is needed
to extend the symmetry-breaking mechanisms of Stan
version 3 to take account of these new symmetries.
The resulting system is SymmetricStan. The data pre-
sented here shows that SymmetricStan obtains expo-
nential improvements in performance over raw Graph-
plan, FF and Stan version 3 itself.

Although our discussion has been largely in terms of
Graphplan-style planning the basic exploitation strat-
egy for handling symmetries is fully general. Exten-
sions similar to those described here would be nec-
essary to implement symmetry-breaking in any back-
tracking search process. In a forward reachability anal-
ysis symmetries can be exploited to prune alternatives
layer by layer, and it is straightforward to consider us-
ing a data structure similar to triedGroups to store the
information necessary to manage this pruning.

Several issues remain to be considered in future
work. We have so far only considered the implementa-
tion of symmetry-breaking in a propositional planning

framework. The idea is easily extended to ADL plan-
ning, and the implementation we have described here
could equally be achieved in an ADL planning con-
text, for example in the Graphplan-based ADL planner
IPP (Koehler et al. 1997). We are so far only exploit-
ing symmetry that corresponds to what we call func-
tional identity — there are other forms of symmetry that
could bring benefits if we could characterise them re-
liably. For example, in many planning problems there
are objects that are almost functionally identical, and
there may be ways of determining whether the senses
in which they are not identical are relevant or not to
the solution of the problem.

The ability to recover symmetries, as is possible in
SymmetricStan, relies on the automatic identification
of symmetries during the search process. An impor-
tant distinction between our work and the exploitation
of symmetries in the CSP community, is that we can
use our notion of functional identity to enable dynamic
automatic detection of certain symmetries using inex-
pensive domain analysis techniques during the search
process.

References

Blum, A.; and Furst, M. 1995. Fast Planning through
Plan-graph Analysis. In Proceedings of 14th IJCAL

Crawford, J.; Ginsberg, M.; Luks, E.; and Roy, A.
1996. Symmetry breaking predicates for search prob-
lems. In Proceedings of KR.

Fox, M., and Long, D. 1999. The detection and ex-
ploitation of symmetry in planning problems. In Pro-
ceedings of 16th IJCAL

Gent, I. P., and Smith, B. 2000. Symmetry breaking
during search in constraint programming. In Proceed-
ings of ECAL

Guéré, E., and Alami, R. 2001. One action is enough
to plan. In Proceedings of 17th IJCAI, 439-444.

Hoffmann, J., and Nebel, B. 2001. The FF plan-
ning system: Fast plan generation through heuristic
search. JAIR 14.

Hoffmann, J. 2001. Local search topology in planning
benchmarks: an empirical analysis. In Proceedings of
17th 1JCAL

Ip, C. N, and Dill, D. L. 1996. Better verification
through symmetry. Formal Methods in System Design
9.

Koehler, J.; Nebel, B.; Hoffmann, J.; and Dimopou-
los, Y. 1997. Extending planning graphs to an ADL
subset. In Proc. ECP’97, Toulouse, 273-285.

Roy, P., and Pachet, F. 1998. Using symmetry of
global constraints to speed up the resolution of csps.
In Workshop on Non-binary Constraints, ECAL

