Hybrid STAN: Identifying and Managing Combinatorial Optimisation
Sub-problems in Planning

Maria Fox and Derek Long
University of Durham, UK
Maria.Fox@dur.ac.uk, D.P.Long@dur.ac.uk

Abstract

It is well-known that planning is hard but it
is less well-known how to approach the hard
parts of a problem instance effectively. Using
static domain analysis techniques we can iden-
tify and abstract certain combinatorial sub-
problems from a planning instance, and de-
ploy specialised technology to solve these sub-
problems in a way that is integrated with the
broader planning activities. We have devel-
oped a hybrid planning system (STAN4) which
brings together alternative planning strategies
and specialised algorithms and selects between
them according to the structure of the plan-
ning domain. STAN4 participated successfully
in the AIPS-2000 planning competition. We
describe how sub-problem abstraction is done,
with particular reference to route-planning ab-
straction, and present some of the competition
data to demonstrate the potential power of the
hybrid approach.

1 Introduction

The knowledge-sparse, or domain-independent, planning
community is often criticised for its obsession with toy
problems and the inability of its technology to scale to
address realistic problems. Planners using weak heuris-
tics, which attempt to guide search using general princi-
ples and without recourse to domain knowledge, cannot
compete, in a given domain, against a planner tailored
to perform well in that domain.

On the other hand, tailoring a planner to a particu-
lar domain requires considerable effort on the part of a
domain expert. This effort is generally not reusable be-
cause a different domain requires a whole new body of
expertise to be captured and it is not clear what (if any)
general principles can be extracted from any single such
effort to facilitate the next. The philosophy underlying
our work on domain analysis is that knowledge-sparse
planning can only be proposed as realistic general plan-
ning technology if it is supplemented by sophisticated
domain analyses capable both of assisting a user in the

development of correct domain descriptions and of iden-
tifying structure in a planning domain that can be effec-
tively exploited to combat search.

In this paper we describe a way of decomposing
planning problems to identify instances of NP-hard
sub-problems, such as Travelling Salesman, that are
most effectively solved by purpose-built technology.
Knowledge-sparse, general, planning is unintelligent be-
cause it uses the same methods to solve all problems,
whether they genuinely require planning or are in fact in-
stances of well-known problems that are themselves the
topic of substantive research. A more powerful approach
is to allow such sub-problems to be abstracted out of the
planning problem and solved using specialised technol-
ogy. The different problem-solving strategies must then
be integrated so that they can cooperate in the solution
of the original problem.

We have been experimenting with using the auto-
matic domain analysis techniques of TIM [Fox and Long,
1998] to recognise and isolate certain combinatorial sub-
problems and to propose a way in which their solution,
by specialised algorithms, might be integrated with a
knowledge-sparse planner.

The work described in this paper has been success-
fully implemented in version 4 of the STAN system
(STAN4) and has proved very promising. STAN4 com-
peted in the AIPS-2000 planning competition where
it excelled in problems involving route-planning sub-
problems and certain resource allocation problems in-
volving a restricted form of resource. The data sets from
the competition are discussed in Section 5. In STAN4,
TIM selects between a forward and backward planning
strategy depending on characteristic features of the do-
main. The forward planning component, FORPLAN,
is integrated with simplified specialist solvers for cer-
tain simple route-planning and resource allocation sub-
problems. In Section 3 we describe the components of
the hybrid architecture of STAN4 and explain the inte-
gration of these components.

2 Recognising Generic Behaviours

TIM can identify a collection of gemeric types within a
domain. Generic types [Long and Fox, 2000] are col-
lections of types, characterised by specific kinds of be-

haviours, examples of which appear in many different
planning domains. For example, domains often feature
transportation behaviours since they often involve the
movement of self-propelled objects between locations.
TIM can identify mobile objects, even when they oc-
cur implicitly, the operations by which they move and
the maps of connected locations on which they move.
The analysis automatically determines whether the maps
are static (for example, road networks) or dynamic (for
example, corridors with lockable doors). The recogni-
tion of transportation features within a domain suggests
the likelihood of route-planning sub-problems arising in
problem instances.

TIM also recognises certain kinds of resources which
restrict the use of particular actions in a domain. Their
presence suggests that resource allocation sub-problems
related to Multi-processor Scheduling or Bin Packing
might arise. TIM is able to recognise the existence, in a
domain, of finite renewable resources which can be con-
sumed and released in units. STAN4 exploited this in the
Freecell domain in the ATPS-2000 competition (see Fig-
ure 3) but we are not, yet, exploiting the presence of such
resources in a robust way. This paper does not give de-
tails of resource handling in STANA4, but our recognition
and handling of Multi-processor Scheduling problems is
described in [Long and Fox, 2001].

TIM takes as input a standard, unannotated, STRIPS
or ADL description of a domain and problem. Integra-
tion of specialised technology with the search strategy
of a planner is easiest to achieve in a heuristic forward-
search-based planner, so we have implemented a forward
planner, FORPLAN, using a simple best-first search
strategy. FORPLAN uses a heuristic evaluation func-
tion, based on solving the relaxed planning problem, sim-
ilar to the approach taken by HSP [Bonet et al., 1997
and Hoffmann’s FF [Hoffmann, 2000]. Like FF, FOR-
PLAN uses a relaxed version of GraphPlan to compute
the relaxed plan estimate. The difference between FOR-
PLAN and FF is that the relaxed plan is constructed
for the abstracted planning problem - that is, the part of
the planning problem that remains when operators and
preconditions relating to the identified sub-problem have
been removed. This gives us only part of the heuristic
estimate. The heuristic estimate is then improved by
estimating the cost of solving the removed sub-problem.
This two-part process can result in much better esti-
mates than those produced by FF. FORPLAN has no
effective heuristic control, except when path-planning or
resource allocation sub-problems can be abstracted, so
that it is almost useless as a general planner.

3 The Hybrid Planner Architecture

Because FORPLAN is not effective as a general planner
we cannot rely on it for solving problems that do not
have the sub-problem characteristics described above.
We therefore constructed a hybrid system for entry into
the ATPS-2000 competition. Our intention, in the com-
petition, was to demonstrate an effective means of ab-

STAN4
TIM
Path-planning
Other domain or
characteristics Resource
management

FORPLAN

sravg

Figure 1: The architecture of the STAN4 hybrid system.

stracting sub-problems from planning instances. In or-
der to be able to compete realistically we needed to be
able to report results for problems that did not have
these features. We therefore added STAN version 3 as
an alternative planning strategy, yielding a hybrid of two
planning strategies and two specialist solvers (one for
solving route-planning sub-problems and one for solving
resource-allocation sub-problems). TIM operates as an
interface to the hybrid, selecting between its components
according to the structure of the domain. A high-level
view of STAN4 is presented in Figure 1.

We now describe the processes by which route-
planning sub-problems, once identified by analysis of a
domain description, are abstracted and their solution, by
specialised algorithms, integrated with FORPLAN. The
processes by which resource-allocation sub-problems are
handled are similar, but we do not describe them in de-
tail here.

TIM first analyses the domain and problem instance to
identify whether mobile objects exist, and if so whether
a decomposable transportation problem can be found.
TIM identifies the mobile objects and the locatedness
predicate (also referred to as the atrel) they use (for ex-
ample: at). The locatedness predicate is important for
identifying actions which rely on changes in the locations
of mobile objects. If an appropriate form of mobile is
found TIM invokes FORPLAN together with the route-
planning sub-solver. STANS is invoked in all domains
in which neither route-planning nor resource allocation
sub-problems can be found.

The presence of STAN3 means that TIM fails safe
when it fails to identify a key sub-problem. At the mo-
ment this happens quite often because we are working
with some simplifying assumptions about the structure
of locatedness conditions and maps, and of resources,
but we are gradually increasing the range of recogniz-
able sub-problems.

If FORPLAN is invoked the domain must be mod-
ified, to abstract out the route-planning, or resource-
allocation, sub-problem, before planning begins.

We intended STAN4 to demonstrate that a hybrid
planning system, in which alternative planning strategies

are chosen automatically, depending on properties of the
problem domain, is feasible. Our specialised algorithms
for handling the abstracted sub-problems in STAN4
demonstrate that special-purpose approaches can be in-
tegrated successfully into the architecture of a planner.
We make no great claims for the specific algorithms we
used. For example, as described below, we use a sim-
ple nearest-neighbour heuristic to estimate the cost of
solving a given Travelling Salesman instance when route-
planning is abstracted. This results in poor estimates in
some domains, for example when there are additional
constraints present on the order in which locations can
be visited. The nearest-neighbour heuristic was a first
attempt at estimating the incurred costs - we are cur-
rently investigating alternative cost measures.

Although the GraphPlan-based strategy of STANJ is
now somewhat dated, its inclusion means that STAN4
can solve (at least some instances of) problems that can-
not be effectively tackled by FORPLAN. STAN3 has
a number of useful features, including symmetry han-
dling [Fox and Long, 1999] and other search control
mechanisms, which can still give it the advantage in
problems that we cannot yet decompose. It also allows
STAN4 to tackle instances of problems involving irre-
versible actions. Because FORPLAN does not backtrack
over its choices it cannot reliably handle such domains.

Despite the valuable role played by STAN3 in the cur-
rent hybrid it is invoked for largely negative reasons. We
will, in the longer term, be interested in combining plan-
ning strategies for which stronger positive arguments can
be made. We see the hybrid architecture as combining
not just alternative planning strategies but collections
of problem-solving strategies and specialised sub-solvers.
There are a number of planners that combine alternative
search strategies which are selected after the preferred
strategy has been tried (for some predetermined period
of time) and has failed (eg: Blackbox, FF, MIPS). Such
systems are often referred to as hybrid, but the approach
taken in these systems is different from the approach
taken in STAN4. In STAN4 a particular planning or
problem-solving strategy is not selected because of the
failure of a preferred strategy but because of the suitabil-
ity of the selected strategy to the perceived structure of
the problem domain. The role of the domain analysis
machinery of TIM in selecting between strategies is the
key to the success of our hybrid planning approach.

The data presented in Section 5 shows the perfor-
mance obtained in the AIPS-2000 planning competi-
tion on domains involving route-planning and resource-
handling sub-problems. These domains were: Logistics
and the STRIPS version of the elevator domain (route-
planning) and Freecell (resource-allocation).

4 Sub-problem abstraction

In order to show how sub-problem abstraction is

achieved in STAN4 we now describe in detail the process

by which route-planning sub-problems are abstracted.
Having found that there are mobile objects in the do-

main TIM determines whether the problem of planning
their movement between locations can be safely dele-
gated to a sub-system. If the shortest distance to be
travelled by an object moving from one location to an-
other can be ascertained by looking at the map that the
object moves on, then path-planning for that object can
be devolved to a shortest path algorithm. If not (if the
object can temporarily vacate the map) then a shortest
path algorithm cannot be guaranteed to find the best
path between two points. The object may be able to
reappear on its map at a location different from the one
it left, and this flying behaviour might give access to
shorter paths than are visible on the map alone. If the
object must always re-enter the map at the same loca-
tion as the one it left then the shortest path between two
points is guaranteed to be visible on the map so this re-
stricted form of flying, which we call hovering, does not
present a problem for route-planning abstraction.

We have experimented with a number of domains in
which mobile objects having this hovering property arise.
It sounds like a rather esoteric property, but it actu-
ally arises naturally. For example — in a simple lamp-
post maintenance domain maintenance engineers move
on a map defined by the locations of the lamp-posts, but
they temporarily leave the map when engaged in a main-
tenance task (during these periods they “hover” above
the map in raised maintenance vehicles) and then return
to the same map location on completion of the task.
In these domains abstraction of the route-planning sub-
problem causes no difficulties because there is no shorter
way to get between lamp-posts than to traverse the map.
On the other hand, when flying is detected we do not
attempt to abstract the problem of route-planning be-
cause it interacts in too complex a way with the rest of
the planning problem.

4.1 Technical details

To achieve the abstraction of route-planning, once TIM
has identified an appropriate mobile type, STAN4 asso-
ciates with each mobile object a data structure which
records the current location of the object. It also identi-
fies each operator, other than the move operation of the
mobile itself, the preconditions of which require a mobile
of this type to be located at a particular location in order
for the action to be executed. Once found, these precon-
ditions are removed from the operators in which they
appear, but each operator is then equipped with an ad-
ditional data value identifying where the mobile must be
in order to satisfy the abstracted precondition. In other
words, the precondition is transformed from a standard
proposition into a specialised representation with equiv-
alent meaning, but allowing specialised treatment. This
specialised representation (which we call a mobile-tag)
provides the means of communication between the plan-
ner and a specialised sub-solver.

All move operations for the mobiles are then elimi-
nated from the domain altogether. This results in an
abstracted version of the domain containing the compo-
nents of the original planning problem that the planner

will be required to solve. The problem is solved by the
planner in this abstracted form. The abstracted problem
is solved using FORPLAN, using a heuristic estimate of
the value of a state based on the length of the relaxed
plan between that state and the goal. The heuristic es-
timate is calculated by first constructing a relaxed plan
with the abstracted operators, and calculating its length,
and then adding to it an estimate for the lengths of the
routes that would have to be traversed by any mobiles it
uses. The latter calculation takes into account the cost
of solution of the abstracted part of the problem.

The cost of traversing the routes that a plan entails
is too expensive to compute with accuracy. The relaxed
plan will show which locations each mobile is required to
visit to satisfy the plan, with some ordering constraints
imposed by the dependencies between the activities the
mobile will be involved in at each location (loading must
be carried out before unloading and so on). To calcu-
late a shortest path that visits all these locations and
respects these orderings is a variation on a Travelling
Salesman problem, with multiple travellers and addi-
tional constraints. This problem is hard and cannot be
solved repeatedly as part of the heuristic evaluation of a
state. Instead, we produce an estimate of the cost by as-
suming that each mobile can visit each location in turn
from the closest of the locations it has previously vis-
ited in the plan, respecting ordering constraints on the
visits. Although this is an unsophisticated approach to
tackling the Travelling Salesman problem, its integration
with the planning process demonstrates the possibility of
integrating more specialised technology. Despite its lack
of sophistication it gives a better estimate of the cost of
a state than a pure relaxed plan estimate, since relaxed
plan estimates neglect the fact that a mobile cannot be
in two places at the same time (the relaxed plan ignores
delete conditions and it is these which express the fact
that a mobile cannot be at two places at once).

Integration between the planner and the route-planner
is required again when actions are selected for addition
to the plan. Once an action is selected it is checked
to determine whether it contains an abstracted located-
ness precondition. If so, a path is proposed to move the
mobile from its current location to the required desti-
nation (recorded within the mobile tag associated with
action). We use the shortest path between the current
location of the mobile (which is always known in a for-
ward search) and the required location recorded in the
mobile tag. At present this path is precomputed by TIM
using Floyd’s shortest paths algorithm on the map in-
ferred from the initial state. This approach works well
for static maps, where the shortest paths remain fixed,
and in situations in which the movement consumes no
additional resources. If the mobile does use resources
during its movement, it might be that the shortest path
is not the best, but instead a longer path which consumes
fewer resources is to be preferred.

Finally, it is necessary to integrate the efforts of the
planner and the route-planner to produce output in the
form of a plan sequence. Once a route has been planned

between the appropriate locations, STAN4 generates in-
stantiations of the necessary move operators to produce
a plan sequence corresponding to standard format for
STRIPS plans. Below we present some of the prelimi-
nary results obtained using domains from the STRIPS
subset of the AIPS2000 competition data set. In this
collection of domains, Logistics and the MICONIC-10
lift domain both contain a path-planning sub-problem
which TIM was able to identify and extract. Even using
just our simple path-planning strategy we were able to
obtain a significant performance advantage from exploit-
ing path-planning abstraction.

5 Experimental Results

The data sets presented here were compiled by Fahiem
Bacchus during the AIPS-2000 competition, held in
Breckenridge, Colorado. In the graphs, the thick line
plots the results of STAN4. Graphs showing time per-
formance are log-scaled.

The graphs show how STAN4 performed on prob-
lems from the STRIPS data set involving either route-
planning or resource allocation. The planners used for
comparison are FF [Hoffmann, 2000], HSP-2 [Bonet
and Geffner, 1997], TALplanner [Doherty and Kvarn-
strom, 1999], SHOP [Nau et al., 1999] and, occasionally,
GRT [Refanidis and Vlahavas, 1999]. The problems used
were Logistics, Freecell and the STRIPS version of the
Miconic-10 elevator domain.

The competition comprised a fully-automated track
and a hand-coded track in which planners were allowed
to use hand-tailored domain knowledge. In the re-
sults presented here, STAN4, FF, GRT and HSP-2 are
all fully-automated, whilst TALplanner and SHOP use
hand-coded control knowledge.

STAN4 participated in the fully-automated track on
the STRIPS problems. All planners able to handle the
STRIPS version of PDDL competed in the STRIPS
problems, including planners in the hand-coded track.
However, despite the advantage of being supplied with
hand-coded control knowledge, these planners did not
consistently out-perform the fully automated planners.
For example, STAN4 and FF were both faster than
TALplanner and SHOP on the first Logistics data set
(not shown) and produced at least as high quality plans.

From Figure 2 it can be observed that STAN4 took
slightly longer than FF on the larger Logistics problems,
but produced slightly better quality plans than any other
planner, including those in the hand-coded track. As
was emphasised earlier, the improvement in plan quality
over FF derives from the fact that STAN4 uses a more
informative heuristic than FF. STAN4 is using route-
abstraction in this domain and achieves a small but con-
sistent improvement in plan quality as a result.

The Freecell domain, Figure 3, was introduced spe-
cially for the competition and is a STRIPS formalisation
of a solitaire card game released under Windows. Free-
cell has a resource-allocation sub-problem, because the
free cells are a restricted, renewable and critical resource.

300

STAN —a— |
e p——
*
%0 Taplamer o
SHOP -0
20 -
240
20

200 -

180 -

Steps.

wox A

120 &

1008
40 45 50 55 60 65 70 75 80
Logistics Problems

100

STAN —=—
HSP2

*
Talplanner &
SHOP -0~

o
L F Lt
aa of%g k!

Time
°

a0 5 50 55 60 65 70 75 80
Logistics Problems

Figure 2: Quality of plans for, and time consumed to
solve, Logistics problems 40-80

Steps

Time

5 10 15 20 25
Freecell Problems.

Figure 3: Quality of plans for, and time consumed to
solve, Freecell problems.

Steps

20 40 60 80 100 120 140
Elevator Problems

Time

20 40 60 80 100 120 140
Elevator Problems

Figure 4: Quality of plans for, and time consumed to
solve, STRIPS elevator problems.

To estimate how far a state is from the goal it is necessary
to take into account the cost of ensuring that sufficient
free cells are made available to meet the requirements of
the abstracted relaxed plan. Our purpose-built technol-
ogy for calculating this cost ensures that the consump-
tion of resources does not exceed availability of those
resources. If a plan entails over-consumption then the
cost of sufficient release actions to redress the balance
is added in to the estimate of its value. We have not
yet succeeded in obtaining a robust way of accurately
estimating these costs, and the performance of STAN4
is somewhat inconsistent as can be seen from the graph.
Despite being fastest in all of the problems that it could
solve, STAN4 missed several problems and was unable
to solve any of the larger instances. Its plan quality was
generally good, except for some anomalously long plans.
More work is needed to adequately estimate the cost of
distributing resources efficiently throughout a plan.

As Figure 4 demonstrates, STAN4 was the second
fastest planner in the STRIPS elevator domain. Again,
STAN4 is using route-planning abstraction, but pro-
duces slightly poorer quality plans at the the top end,
than either FF or GRT, because of the coarseness of
the nearest-neighbour heuristic used to solve the Travel-
ling Salesman problem that arises for the elevator. This
heuristic favours visiting all of the pick-up locations be-
fore any of the drop-off locations (the simplest way of
respecting the ordering constraints in the plan). In fact,
a subtler approach would be to allow the drop-off loca-
tions to be inter-mingled with the pick-up ones, provided

that a drop-off location is only selected next when the
necessary people are on board. The nearest-neighbour
heuristic tends to work less well whenever there are many
objects to be transported (and many locations to be vis-
ited), and few carriers, as well as additional constraints
(derived from the need to collect objects before deliv-
ering them) as in the elevator domain. The heuristic
results in greater accuracy in Logistics because there are
(typically) few packages to be transported by any one
carrier. However, the nearest-neighbour heuristic was
only ever intended to demonstrate that it is possible to
integrate purpose-built machinery into the heuristic esti-
mate, allowing the incurred cost of solving an abstracted
problem to be taken into account in measuring the good-
ness of a state. We are currently investigating more so-
phisticated special-purpose algorithms.

The data presented here gives a clear indication of
the potential value of sub-problem abstraction within
a forward planning framework. Although FORPLAN is
far from effective as a general planner, the exploitation of
sub-problem abstraction makes a range of hard problems
manageable and the generated solutions efficient.

6 Further Work

Although these foundations have produced promising re-
sults the framework we have used to achieve integration
is somewhat unsophisticated and inflexible. TIM cur-
rently only recognises certain specific forms of mobile
and very restricted forms of resource. As TIM fails safe
when appropriate forms are not recognised this does not
affect the completeness of STAN4. It does mean that
STAN4 is often unable to exploit domain structure ef-
fectively and we are working on extending its repertoire.

STAN4 can only integrate with one specialised sub-
solver, even when there are two or more combinatorial
sub-problems in a domain. At present STAN4 empha-
sises route-planning abstraction because we have made
most progress in solving route-planning sub-problems ef-
fectively. An important development is to enable inte-
gration with more than one sub-solver. This will involve
finding a way to communicate constraints between mul-
tiple sub-solvers and the planner.

Our “specialised technology” is currently very sim-
plistic. An important refinement is to enable proper
integration between the planner and the best available
technology for solving combinatorial sub-problems where
these arise. Our handling of resources in STAN4 is
very restricted. We are working on the recognition of
makespan subproblems, which are instances of Multi-
processor Scheduling, and their treatment using approx-
imation algorithms for scheduling.

7 Conclusions

We have experimented, using STAN4, with the design of
a hybrid planning system in which the choice of problem-
solving strategy is made automatically following static
analysis of the domain. Our current goals are to im-
prove the integration between FORPLAN and the spe-

cialised solvers, allowing a more sophisticated profile of
sub-problems to be managed, and to explore what ad-
vantages might be gained from integrating other plan-
ning strategies into the hybrid.

The key idea underlying our hybrid approach is that
planning is not appropriate technology for solving all
problems, and that resorting to generic search, or switch-
ing between a number of timed strategies, is not an ef-
fective way to address such problems. Instead we are
interested in building up a collection of purpose-built
strategies for combatting some of the most commonly
occurring combinatorial sub-problems and making these
available, together with techniques for recognising where
these problems arise in planning domains. The decision
about how to approach a given planning problem can
then be made automatically, in a principled way, by de-
ciding how to view the problem and deploying the most
effective technology to solve it.

References

[Bonet and Geffner, 1997] B. Bonet and H. Geffner.
Planning as heuristic search: new results. In Proc.
ECP, 1997.

[Bonet et al., 1997] B. Bonet, G. Loerincs,
and H. Geffner. A robust and fast action selection
mechanism for planning. In AAAI 1997.

[Doherty and Kvarnstrom, 1999] P. Doherty and
J. Kvarnstrom. Talplanner: An empirical inverstiga-
tion of a temporal logic-based forward chaining plan-
ner. In Proceedings of 6th International Workshop on
Temporal Representation and Reasoning, 1999.

[Fox and Long, 1998] M. Fox and D. Long. The auto-
matic inference of state invariants in TIM. JAIR, 9,
1998.

[Fox and Long, 1999] M. Fox and D. Long. The detec-
tion and exploitation of symmetry in planning prob-
lems. In Proc. IJCAI 1999.

[Hoffmann, 2000] J. Hoffmann. A heuristic for domain-
independent planning and its use in an enforced hill-
climbing algorithm. Technical report, Albert-Ludwigs
University, Freiburg, Germany, 2000.

[Long and Fox, 2000] D. Long and M. Fox. Automatic
synthesis and use of generic types in planning. In
AIPS, 2000.

[Long and Fox, 2001] D. Long and M. Fox. Multi-
processor scheduling problems in planning. Technical
report, Department of Computer Science, University
of Durham, UK, 2001.

[Nau et al., 1999] D. Nau, Y. Cao, A. Lotem, and
H. Mufioz-Avila. SHOP: Simple hierarchical orederd
planner. In Proc. IJCAI 1999.

[Refanidis and Vlahavas, 1999] I. Refanidis and I. Vla-
havas. GRT: A domain independent heuristic for

STRIPS worlds based on greedy regression tables. In
Proc. ECP, 1999.

