Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Morphology of ablation craters generated by fs laser pulses in LiNbO3

Lamela, J. and Lifante, G. and Han, T.P.J. and Jaque, F. and Garcia-Navarro, A. and Olivares, J. and Agullo-Lopez, F. (2009) Morphology of ablation craters generated by fs laser pulses in LiNbO3. Applied Surface Science, 255 (7). pp. 3918-3922. ISSN 0169-4332

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The surface morphology of the ablation craters generated in LiNbO3 by 130 fs laser pulses at 800 nm has been investigated by AFM/SNOM microscopy. The single pulse fluence corresponding to the ablation threshold has been estimated to be ≈1.8 J/cm2. A complex structure including random cone-shaped protrusions is observed inside the ablated crater. The scale of the protrusion spacing is in the submicron range and the heights are typically of a few tens of nanometers. At and outside the crater rim a novel quasi-periodic wave-like topography pattern is observed in both types of microscopy techniques. The average wavelength, that is slightly dependent on pulse fluence, is (500-800 nm) comparable to the light wavelength. This novel topography feature keeps a close similarity with a Fresnel diffraction pattern by an absorbing circular obstacle or impact wave pattern produced by a combination of heat and shock wave (resemble that of impact crater). It is proposed that the obstacle is associated to the strongly nonlinear multiphoton absorption at the peak of the pulse profile. The energy deposited by nonlinear absorption of such profile causes ablation of both the crater and the rippled structure.