Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Planning with generic types

Long, D. and Fox, M. (2002) Planning with generic types. In: Exploring Artificial Intelligence in the New Millennium. Morgan Kaufmann Series in Artificial Intelligence . Morgan Kaufmann, pp. 103-138. ISBN 1558608117

[img]
Preview
PDF (strathprints001934.pdf)
strathprints001934.pdf

Download (394kB) | Preview

Abstract

Domain-independent, or knowledge-sparse, planning has limited practical appli-cation because of the failure of brute-force search to scale to address real prob-lems. However, requiring a domain engineer to take responsibility for directing the search behavior of a planner entails a heavy burden of representation and leads to systems that have no general application. An interesting compromise is to use domain analysis techniques to extract features from a domain description that can exploited to good effect by a planner. In this chapter we discuss the process by which generic patterns of behavior can be recognized in a domain, by automatic techniques, and appropriate specialized technologies recruited to assist a planner in efficient problem solving in that domain. We describe the in-tegrated architecture of STAN5 and present results to demonstrate its potential on a variety of planning domains, including two that are currently beyond the problem-solving power of existing knowledge-sparse approaches.