Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Cr3+ spectroscopy study in ZnO-codoped and Zn-in-diffused congruent LiNbO3:Cr crystals

Han, T.P.J. and Cantelar, E. and Lifante, G. and Cusso, F. and Jaque, F. (2009) Cr3+ spectroscopy study in ZnO-codoped and Zn-in-diffused congruent LiNbO3:Cr crystals. Applied Physics B: Lasers and Optics, 94 (2). pp. 209-214. ISSN 0946-2171

Full text not available in this repository. (Request a copy from the Strathclyde author)


This paper reports on the spectroscopy properties, absorption and luminescence, of Cr3+ ions in singly doped, ZnO-codoped, and Zn in-diffused LiNbO3:Cr crystals. In addition to the broad absorption, inter-ionic transitions ascribed to Cr3+ ions located in Li+ and Nb5+ sites; [Cr]Li and [Cr]Nb centres two absorption bands at higher energy are reported and ascribed to the charge transfer transitions of the Cr3+ ions of the two defect centres. The charge transfer transitions are used as optical probe to study the role of the Zn ions in the Zn in-diffused LiNbO3:Cr samples. It has been observed that the Zn-in-diffused processes created [Cr]Nb centres in the diffusion zone. The location of the diffused Zn2+ ions is considered to be in Li+ site, displacing the Cr3+ ions from the Li+ sites, [Cr]Li, to the Nb5+ positions, [Cr]Nb.