
Exploiting a Graphplan Framework in Temporal Planning

Derek Long and Maria Fox
University of Durham, UK

D.P.Long@dur.ac.uk,Maria.Fox@dur.ac.uk

Abstract

Graphplan (Blum & Furst 1995) has proved a popular and
successful basis for a succession of extensions. An extension
to handle temporal planning is a natural one to consider, be-
cause of the seductively time-like structure of the layers in
the plan graph. TGP (Smith & Weld 1999) and TPSys (Gar-
rido, Onaind́ıa, & Barber 2001; Garrido, Fox, & Long 2002)
are both examples of temporal planners that have exploited
the Graphplan foundation. However, both of these systems
(including both versions of TPSys) exploit the graph to rep-
resent a uniform flow of time. In this paper we describe an
alternative approach, in which the graph is used to repre-
sent thepurely logicalstructuring of the plan, with tempo-
ral constraints being managed separately (although not inde-
pendently). The approach uses a linear constraint solver to
ensure that temporal durations are correctly respected. The
resulting planner offers an interesting alternative to the other
approaches, offering an important extension in expressive
power.

Introduction
Graphplan (Blum & Furst 1995) has proved an influen-
tial planning system, even if its performance has been su-
perceded for many of the classical benchmark problems.
Amongst its many adaptations is one of the first domain-
independent planners (not using hand-coded control knowl-
edge) to manage temporal planning, TGP (Smith & Weld
1999). In that system, the structure of the graph was ex-
ploited to represent the flow of time and durations were at-
tached toactions, using a very strong constraint on interac-
tions between concurrent actions. In particular, any propo-
sition that is changed by the action is effectively locked to
that action for the interval of its execution. This means that
it is impossible to express actions in which the desired ef-
fect is something that is true precisely for the duration of
the action. For example, if one needs to cross the basement
and replace a fuse, then the light to achieve these actions
might be provided by striking matches. The light begins
when the match is struck and ends after the duration of the
match burning action. Potential for this kind of concurrency
is captured in PDDL2.1 (Fox & Long 2002). Durative ac-
tions in that model use the end points of durative actions

Copyright c© 2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

to capture the behaviour that occurs in the interval of the
durative action, allowing more sophisticated exploitation of
concurrent activity, including the consultation of proposi-
tions that are changed by durative actions. This model is
founded on an underlying principle that duration is attached
to state and that transitions between logical values of state-
describing propositions should be instantaneous at the level
of the model, since otherwise it is necessary to complicate
the model of state updates by introducing a third value repre-
sentingundefinedwhich must be used for propositions that
are in flux. It was, in effect, to handle the consequences
of a conservative model of undefined values that Smith and
Weld (Smith & Weld 1999) introduced such a tightly con-
strained mutual exclusion relation between concurrent ac-
tions, preventing any activities from attempting a concurrent
access of a proposition that might be undefined because of
the transitional activity in a parallel durative action.

In this paper we propose a different approach to the treat-
ment of time in a Graphplan framework, resting on the
PDDL2.1 model of durative actions. The principle idea is to
use the layers of the graph to represent not the flow of time,
but the logical structure of the plan. That is, each layer in the
graph will represent the occurrence of interesting activity,
and never simply the passage of time. This is an important
shift, since TGP is required to model the flow of time in the
graph structure in a different way: during graph construc-
tion, the lengths of durative actions can take any relative val-
ues without causing any difficulties, but during search there
is a problem in identifying how far back to step from one
goal set to another when using anoopto achieve a goal. The
solution is to adopt a specific size for the increment repre-
sented by anoop. The size of this increment can, of course,
be selected to minimize the number of goal layers that need
to be considered during search (using the GCD of the lengths
of the actions in the domain), but this is very likely to pre-
vent a graph from being successfully searched if the longest
action, or the required plan length, is a large multiple of this
time increment. For example, if the longest action has a du-
ration a thousand times longer than the shortest action, then
a plan that involves executing just one instance of each of the
longest and shortest actions could require a search through
a thousand layers, which is simply impractical for current
Graphplan planners. In contrast, thelogical structure of the
plan consists of just three happenings: the start of the two

actions, the end of the shortest action and, finally, the end of
the longest action.

The objectives of this work are:

1. to modify Graphplan to perform temporal planning in a
language that allows both initial and final effects of a du-
rative action to be exploited in a plan;

2. to construct an architecture that is as simple an extension
or modification of Graphplan as possible, since Graphplan
is a widely and well-understood foundation, making this
approach more accessible;

3. to demonstrate the relationship between mutex relations
in Graphplan and the interactions between concurrent du-
rative actions.

We proceed to describe the way in which a PDDL2.1 do-
main is converted into a form that allows Graphplan plan-
ning to be used. Several constraints must be satisfied by the
domain for this transformation to be possible and they are
described. We then go on to describe the modifications to the
Graphplan algorithm that allow correct temporal planning
behaviour to be achieved and the mechanisms by which the
temporal durations of states are introduced into the planning
structure. We present some results and discuss the shortcom-
ings of the approach. Finally, we make some observations
about the relationship between the Graphplan model of con-
currency and the PDDL2.1 model of concurrency.

Treatment of PDDL2.1 domains
In this section we discuss the preprocessing of a PDDL2.1
durative actions domain model to achieve a form that can be
used for Graphplan planning. The core idea is to translate
durative actions into standard simple actions that can be used
to simulate the original semantics of the durative-actions.

PDDL2.1 extends PDDL in several important ways. In
this paper we consider only the temporal extension. The
treatment of numeric values has been explored in the Graph-
plan framework (Koehler 1998), but we have not considered
it further in this work. PDDL2.1 offers the opportunity to
use different kinds of durative actions: the simplest are those
in which the durations are fixed, possibly as a function of
the parameters of the action. Since we are not considering
numeric values in any other context, we can only allow du-
rations that are a fixed function of the parameters, defined
in the initial state. Thus, for example, a fly action that takes
time that is a function of the start and end of the flight is
possible, but we cannot capture fuel use or flight time that is
a function of how much fuel the plane is carrying. PDDL2.1
represents durative actions by describing the transitions that
occur at the end points of the interval of activity, using an
essentially classical pre- and post-condition model of these
transitions, together with a collection of invariant conditions
that must hold over the duration of the action. The invari-
ants are an essential element that bind together the start and
end points of the actions into a coherent durative activity.
The other element is the duration itself, which governs the
separation of the start and end points.

In the following discussion, we are motivated by the in-
tention to modify the underlying Graphplan behaviour as lit-

tle as possible. This offers several possible advantages, in-
cluding that the wide array of Graphplan extensions and al-
gorithmic improvements that have been considered could be
applicable to the temporal form. There is a trade-off to be
considered. On one hand it is possible to use mechanisms
in a carefully constructed domain encoding that will force
a standard Graphplan system to simulate our intended se-
mantics of durative actions. On the other hand, some mech-
anisms cause such a deterioration in Graphplan behaviour
that it is impractical to avoid making modifications to the
algorithm to achieve the intended behaviour.

A straightforward conversion of PDDL2.1 actions into ac-
tions that can be used by a standard Graphplan planner is to
create the simple actions representing the end points of the
durative actions. This is a good starting point, although we
shall see that there are some complications that must be ad-
dressed. The first of these is that we want to ensure that the
start and end point actions are always managed as a pair.
To achieve this, we add a new effect to the start action that
is required by, and deleted by, the end action. Thus, the
end action cannot be executed without also executing the
start action. The converse case raises an interesting ques-
tion about the nature of plans: if a plan contains the start
of a durative action, without seeing it through to successful
completion, should it be considered a valid plan? This ques-
tion is discussed in detail elsewhere (Long & Fox 2001), but
in the current work we adopt the view that durative actions
carry an intention to complete them, and it is therefore in-
appropriate to construct a plan exploiting the initial effects
of a durative action without confirming that the obligations
for successful completion can be met. Therefore, if a plan
contains the start action it must also contain the end action.
This is a constraint that cannot be imposed using pre- and
post-conditions of the actions alone. It can be achieved by
adding a delete effect to the start action that is reachieved by
the end action, and then adding this proposition to the initial
state of the problem and to the goal state, for every action
instance. Thus, use of the start action will prevent the goal
from being reached unless the end action is used to restore
the equilibrium. This mechanism is a relatively expensive
one to use, since it requires a large number of new artificial
facts and also creates a large number of artificial new choice
points. The alternative is to prevent start actions from be-
ing used to achieve goals unless their corresponding end ac-
tion has already been inserted into the plan (while searching
backwards through the plan graph).

A subtle but deliberate choice in the semantics of
PDDL2.1 requires that invariant conditions hold in theopen
interval defined by the end points of a durative action. In
fact, the invariant is checked between each pair of happen-
ings executed in the plan within the interval of the durative
action. A happening is a collection of (instantaneous) ac-
tions (or end points of durative actions) executed at the same
time. If we model durative actions with only the pair of end
point actions then the invariant is effectively ignored. To
correctly account for the invariant we introduce a new ac-
tion with the invariant as its precondition. In order to force
this action to sit between the end points of the durative action
from which it is derived, we give the action a precondition

A-start A-endA-invariant
check

A-invariant
check

Pre: start

+initial effects
Add: As

Pre: As, inv

Add: As, Ai

Pre: As, inv

Add: As, Ai
+ final effects

Pre: As, Ai

Del: As, Ai

with invariant: invDurative action, A,

Figure 1: Modelling a durative action with a collection of simple instantaneous actions.

achieved by the start action and an effect required as precon-
dition by the end action. However, there remains a problem:
we want it to be possible for multiple happenings to occur in
the interval between the end points, and in that case the in-
variant should be rechecked following each such happening.
This means that we must force the invariant checking action
to be reapplied at each layer in the graph between the layer
containing the start action and the layer containing the corre-
sponding end action. Unfortunately, Graphplan will attempt
to exploit noopsto make the effect of the invariant action
persist until the end point at which it is required, or the effect
of the start action persist until the invariant action requires it,
placing a single instance of the invariant checking action at
whichever intermediate layer is least inconvenient. To pre-
vent this we require two mechanisms, one being a modifica-
tion of the Graphplan machinery itself and the other being an
addition to the domain encoding. The latter is the require-
ment to add an additional effect to the invariant checking
action, which is the special proposition achieved by the start
action and used as a precondition of the invariant-checking
action itself. It can be seen that this action then behaves like
a noopwith additional preconditions — the invariant con-
ditions of the durative action to which it corresponds. The
modification in the Graphplan engine is not to generate the
standardnoop for either the special effect of the invariant-
checking action or for the effect of the start action that acts
as precondition for the invariant-checking action and the end
action.

The way in which this collection of actions now fits to-
gether to model the enactment of a durative action can be
seen in Figure 1. An example of the actions generated for a
durative action from PDDL2.1 can be seen in Figure 2.

The last requirement to harness Graphplan to our purpose
is a means to communicate the durations of durative actions.
This is really an implementation detail, but our solution is
to separate the duration values out of the initial state and
put them into a separate file, while adding a special dura-
tion field to each of the start and end point actions. The
transformed domain is therefore in a pseudo-PDDL syntax,
representing a collection of almost classical STRIPS PDDL
actions, but for this additional information. The transforma-
tion can be performed automatically from a PDDL2.1 input,

(:durative-action debark

:parameters (?p - person ?a - aircraft ?c - city)

:duration (= ?duration debarking-time)

:condition (and (at start (in ?p ?a))

(over all (at ?a ?c)))

:effect (and (at start (not (in ?p ?a)))

(at end (at ?p ?c))))

(:action debark-start

:parameters (?p -person ?a -aircraft ?c -city)

:duration (debarking-time)

:precondition (in ?p ?a)

:effect (and (not (in ?p ?a))

(debarking-inv ?p ?a ?c)))

(:action debark-inv

:parameters (?p -person ?a -aircraft ?c -city)

:precondition (and (debarking-inv ?p ?a ?c)

(at ?a ?c))

:effect (and (idebarking-inv ?p ?a ?c)

(debarking-inv ?p ?a ?c)))

(:action debark-end

:parameters (?p -person ?a -aircraft ?c -city)

:duration (debarking-time)

:precondition (idebarking-inv ?p ?a ?c)

:effect (and (not (idebarking-inv ?p ?a ?c))

(not (debarking-inv ?p ?a ?c))

(at ?p ?c)))

Figure 2: The result of converting a PDDL2.1 durative ac-
tion (at the top) into linked instantaneous actions. Note the
introduction of the duration field in both the start and end
actions.

PDDL2.1 Durative Action
Domain Model

PDDL2.1 Problem

Translator (based on
Validator code)

LPGP Simple Action
set

LPGP Problem

LPGP Durations

Action Grounding

Graph Construction

Graph Search Linear Programming Solver

Plan Final Processing Valid PDDL2.1
Plan

LPGP: Modified GraphPlan Engine

Figure 3: The architecture of the temporal Graphplan vari-
ant, LPGP.

so should not be seen as introducing a new language, but
simply as a compilation into an internal representation for-
mat.

An important question arises in determining the treatment
of start actions as possible achievers. When anendaction
is used to achieve a goal the corresponding start action will
be forced into the plan in order to satisfy the preconditions
of the end action. On the other hand, if astart action could
satisfy a goal then the corresponding end actionshould al-
ready have been placed in the plan. This organisation fol-
lows from the backward sweep search that is used to con-
struct a plan in Graphplan. Unfortunately, it is very difficult
to return to a previously visited layer in the search and insert
additional actions, so using a start action to achieve a goal
is very problematic. This problem does not arise in TGP
because the action representation precludes durative actions
achieving anything at the start of their execution. A further
encoding can be used to handle this situation. We add a spe-
cial effect to the end action that also appears as a goal and in
the initial state. This means that the goal can be achieved by
noops from the initial state, or it can be achieved using the
end action encoding the durative action. The consequence of
this construction is to allow the search to insert the end ac-
tion into the plan at any layer in the search. In addition, we
ensure that start actions can only be selected if their corre-
sponding end point is already in the plan. The special propo-
sition acts as a catalyst to allow insertion of the end action
when the release of the start action is necessary for the con-
struction of a plan. It is possible to use some analysis to
determine when the start effects of an action could be re-
quired to achieve the goals, based on the reachability within
the plan graph. This allows us to limit use of this construc-
tion to cases where it might play a useful role.

The process by which our Graphplan variant, which we
call LPGP (Linear Programming and Graph Plan), plans
with a PDDL2.1 domain is shown in Figure 3. The durations
file produced in the translation conveniently separates the in-
formation required for managing the durative actions from
the initial state information required for the usual grounding
of actions.

Modelling Time Flow in the Planning Graph

In TGP and TPSys, the plan graph is adapted to perform
temporal planning by attaching duration to actions, where
actions are represented by a single structure as with the orig-
inal Graphplan. The disadvantage of this approach is that
the layers containing actions can then no longer be treated
as uniform, since they can contain actions of different dura-
tions. As a result, the structure of the graph is complex to
construct and to search.

In the LPGP planner we invert the way in which time is
attached to states and actions and we do not use the graph
layers to measure time in uniform increments. In TGP
and TPSys states are instantaneous, while time flow is at-
tached to the actions. Actions can span several layers of the
graph between the point at which their preconditions must
be achieved and the end point at which they have their ef-
fects. TGP actions do not have initial effects and actions are
mutex with any other actions that might attempt to access
the propositions used or changed by them. This is a strong
mutex relationship, and prevents any attempt to model, for
example, executing an action to wash ones hands while a
sink is being filled — the sink-filling action must end before
the water is accessible.

During search, TGP must attach a length withnoopac-
tions. To ensure that an optimal length plan is found, this
must be set to be the GCD of the lengths of actions in the
domain, which can result in an expensive search process.
However, this technique has an important benefit which is
that the optimality of the plan length in terms of graph layers
searched is equivalent to the optimality in terms of execution
time. However, the price is very high: any plan that has a
long execution time relative to the lengths of any of its ac-
tions will require a very large graph structure to be searched,
even if the plan requires relatively few actions.

In LPGP we attach duration to states, so each fact layer
is associated with a duration. The layers are used only to
capture the points at which events occur within the execu-
tion trace of the plan, rather than uniform passage of time.
By separating the graph structure from the flow of time in
this way we gain the benefit that plans with few events only
require short graph structures. However, it is not always true
that a plan that requires fewest distinct points of activity will
be the shortest in duration. For example, if two goals can be
achieved by the parallel execution of actionsA andB, with
durations3 and5 time units respectively, or by the single
actionC with duration100 units, the plan in whichA and
B are used will require more distinct levels of activity (the
simultaneous start ofA andB, the end ofA and then the end
of B) than the plan usingC alone. In fact, this example is
slightly simplified because of the need to insert the special
actions to check invariants. The complete plan structure is
illustrated in Figure 4.

With this interpretation of the relationship between the
plan graph and the flow of time in mind, we now consider
the modifications to the underlying Graphplan algorithms to
support temporal planning in LPGP.

A-inv

B-inv

A-end

B-inv

A-start

B-start B-end

Constraints: d1 + d2 + d3 = B-duration = 5

d1 + d2 = A-duration = 3

C-endC-invC-start d’1 d’2

d’1 + d’2 = 100Constraints:

d1 d2 d3

Plan 1

Plan 2

Figure 4: Two alternative plan structures showing how a
temporally longer plan can have a simpler activity structure,
being represented in fewer plan graph layers.

Modification to Graphplan
The architecture of Graphplan can be divided into three
components: the grounding of actions, the construction of
the plan graph and the subsequent search for a plan. In prac-
tice, of course, graph construction and search are interleaved
(leading to an iterated depth-first search), but it is convenient
to consider these three components separately in order to ex-
plain how LPGP modifies the original Graphplan algorithm.

Action Grounding
During grounding of actions we prune out start and end ac-
tions if their duration field is undefined in the durations file.
These actions are not legally applicable. Also during the in-
stantiation phase we attach the correct duration values to the
instances of the start and end point actions, looked up from
the values to be found in the initial state. The final mod-
ification in the instantiation phase is to mark actions with
their type (derived from an examination of the suffix in their
names): start, end and invariant-checking actions. Only one
instance of each of these actions is required (including the
invariant-checking action), even though multiple instances
might be applied in a plan. Where a durative action spans
multiple layers, requiring several instances of the invariant-
checking action to be applied, the instances are all copies of
the same action instantiation, each attached to its own layer
of the graph.

Thus, the only modification to a standard Graphplan algo-
rithm required during the grounding phase is the addition of
extra information to the ground action structures that can be
inferred from the names of the actions.

Graph Construction
The graph construction phase is modified in two ways.
Firstly, a stronger mutex relation is enforced between ac-
tions than the classical Graphplan mutex. In Graphplan, two
actions are permanently mutex if the delete effects of one in-
tersect with the preconditions or add effects of the other. In
PDDL2.1 there is a stronger requirement to ensure that ac-
tions do not interfere with one another, called the “no mov-

ing targets” rule. This insists that two actions cannot be ex-
ecuted concurrently if they add the same effect or delete the
same effect, in addition to the possible sources of interfer-
ence identified in Graphplan. We discuss the implications of
this in the context of a temporal plan in Section . The second
modification is that nonoopsare constructed for the facts
that have an-inv suffix. This forces the invariant checking
actions to be used to propagate these facts between layers,
ensuring that the invariants are checked as the propagation
is carried out.

Graph search
This phase of the Graphplan algorithm is the one most af-
fected by the introduction of time. The original Graph-
plan search algorithm is shown in Figure 5, annotated with
the modifications required to support LPGP. Underlying the
modification is the introduction of a linear programming
problem, with constraints derived from the durations of ac-
tions. This problem can be maintained during the search
so that, at all times, a solution to the linear constraints will
provide a consistent allocation of durations to the fragment
of the plan that has so far been constructed. If the problem
is ever unsolvable then the plan is invalid and search must
backtrack.

When an end action is selected to act as the achiever for a
goal fact we introduce a temporal constraint. This constraint
will assert that the total duration of the fact layers between
the start and end actions of the durative action must equal
the duration of the action. However, when the end action
is first introduced we cannot yet know when the start action
will appear. Therefore, the constraint is initially an asser-
tion that the layers between the current layer and the layer
containing the end action must have total duration less than
the duration of the associated action. The two forms of con-
straints, then, are simply linear constraints on the durations
of the fact layers and the equations must be solved for these
durations, minimizing the total duration of the plan. This
means that it is possible to use a linear programming algo-
rithm (such as the simplex algorithm) to solve the equations.
The form of the constraints for such a solver is best given
as a matrix of the coefficients for the linear combinations
of the variables (which are the durations attached to the fact
layers). The matrix contains as many columns as there are
fact layers in the graph and as many rows as there are dura-
tive actions in the (current) plan. New columns are added to
the matrix as the graph is extended, prior to searching from
each new layer. As an end action is introduced into the plan a
new row is added to the matrix. When an invariant-checking
action is added, the column denoting the fact layer succeed-
ing the action layer containing the invariant check is set to
1 in the row corresponding to the end action coupled to this
invariant check. When a start action is introduced, the cor-
rect entry is set to1, just as for the invariant check, but also
the constraint is switched from an inequality to an equality.
Backtracking through the choice of any of these action types
causes the exact reversal of these activities, resetting matrix
entries to0 where they were set to1. The matrix associated
with a simple example developing plan structure is shown in
Figure 6.

0 1 1 0 0
0 0 1 1 1
0 0 0 1 1
0 1 1 1 1
0 0 0 0 0

=
=
=

<=
<=

dur-A
dur-B
dur-C
dur-D
dur-E

0
0
0
0
0

0
0
0
0
0 d1

d2
d3
d4
d5

k+5 columns

As it progresses to layer k-1 these
matrix entries will be set to 1 when the
appropriate invariant-checking or start
action is introduced into that layer.

Assume search has reached action layer k.

Constraint becomes equality
when start action is added to
plan.

Action kFact k Fact k+1 Action k+1 Action k+2 Fact k+3 Action k+3Fact k+2 Action k+4Fact k+4

A-start A-inv A-end

B-start B-inv B-inv B-end

C-start C-inv C-end

D-inv D-inv D-inv D-inv D-end

E-end

d1 d2 d3 d4 d5

Figure 6: The matrix of constraints associated with an example partially complete graph search.

An important decision is when to check the equations.
One possibility would be to check them whenever the ma-
trix is modified. However, the inequality constraints are typ-
ically less difficult to satisfy than the equality constraints,
so we choose to carry out checks only when start actions
are added to the plan, which convert inequality constraints
to equality constraints. This has the benefit of reducing the
number of calls to the linear constraint solver, but the cost of
not always discovering that the equations are unsolvable un-
til several choices after the point of failure. Other schemes
would be possible, such as checking the constraints at each
layer in order to avoid developing bad choices into the next
layer.

This approach is similar to that taken in Zeno (Penberthy
& Weld 1994), but in that planner the underlying architec-
ture was a partial order planner. In the Graphplan framework
we gain all of the benefits that have been associated with
Graphplan in comparison with partial order planners (and
all of the weaknesses), and we are able to construct a com-
plete collection of constraints at all points in the planning
process. In contrast, Zeno was unable to invoke the numeric
constraint solver until the constraints were properly instanti-
ated, preventing it from identifying flawed plans as early as
might be hoped. Of course, Zeno was handling a richer lan-
guage, including numeric effects, presenting a harder prob-
lem than a treatment of duration constraints alone.

An interesting additional factor in our treatment is con-
nected to an important consequence of the mutex relation-
ships that we use to govern the validity of plans in PDDL2.1.
The “no moving targets” rule forbids actions from being ex-
ecuted simultaneously if they could possibly interfere with
one another’s pre- or post-conditions. Therefore, actions that
do interact must be separated by a small, but non-zero, in-
terval. Typically, the only constraint we have to satisfy is
that the duration of separation must be positive. This gives

rise to the need to introduce very small values into a plan.
In the validation of plans, as we discuss elsewhere (Long &
Fox 2001), we introduce a small constant that dictates the
minimum degree of separation allowed between actions, in
order to avoid the problem that one plan might be judged bet-
ter than another simply because it used smaller separations
than the second, possibly otherwise identical, plan. This
bound must be introduced into the equations we construct as
a lower bound on the values of the variables (the fact layer
durations). It will be observed that the first fact layer can
never be constrained by any constraint other than this lower
bound, since it can never appearbetweena start and end ac-
tion. This leads the constraint solver to assign the minimum
duration to the first fact layer in every case, which is a di-
rect reflection of the decision in the semantics of PDDL2.1
to begin the initial state at time0, while insisting that states
are always associated with intervals that are half-open on the
right. That decision prevents the first actions in a plan from
being executed at0 and forces them to begin at a small, non-
zero time after0. The value of the small, non-zero time that
is used is selected by the programmer in the current imple-
mentation (we set it at 0.001), but it would be easy to set if
from the command line, or, as we discuss in (Long & Fox
2001), from a value communicated in a problem description.

Results
We implemented the architecture as shown in Figure 3. The
Graphplan implementation we used as our foundation is an
older version ofSTAN. We did not use the newer imple-
mentations because they introduce other mechanisms that
interact with the temporal planning machinery in ways that
have yet to be explored. The implementation was designed
to be as convenient a modification of the Graphplan system
as possible, rather than working for a highly optimised im-
plementation and we do not make any claims for great effi-

boolean find-plan(GoalSet G,Level n)
// Finish when reach initial state.
if(n == 0) return true;
if(G is empty)
then Set H = preconditions of active actions at level n;
// Recursively satisfy goals at next level

extend M with an extra column;
return find-plan(H,n-1);

else select goal g in G;
// There are nonoopsfor inv conditions

if(g has anoopat level n)
then makenoopactive at level n;

remove g from G;
if(find-plan(G,n)) return true;
deactivatenoopfor g at level n;

for each achiever, a, of g at level n do;
if(a is not mutex with active actions at n)
thenif(a is an end action)

then add a new row to M;
set row bound to duration of a;
set row constraint to≤;
set M[a,n] = 1;

if(a is an invariant action)
then set M[a,n] = 1;
if(a is a start action)
then set M[a,n] = 1;

set row constraint for a to be =;
if(not solve(M))
then deactivate a;

set constraint row a to≤;
restart loop with next a;

activate a at level n;
if(find-plan(G,n)) return true;
deactivate a at level n;
if(a is start, invariant or end)
then reverse modifications to M;

loop;
return false;

Figure 5: The original Graphplan search algorithm andin
italics the modifications required for LPGP. M is the matrix
of LP constraints. We use M[a,n] for the entry in M at the
row for the durative action from which a is derived and the
column for layer n.

ciency.
To solve the linear constraints we used thelp solve

library originally developed by Michel Berkelaar (Berkelaar
2000). This we connected as a library to the LPGP code, and
used its API to manage the constraint matrix. This solver
attempts to solve modified problems from the same basis
that solved the problem before the modification, which is an
excellent strategy in the context of our exploitation: most
often new constraints do not have a dramatic impact on the
constraint solution, since most durative actions span few fact
layers.

We compared the performance of LPGP with planners
competing in the 3rd International Planning Competition.
The results of most interest are summarised in Figure 7.

The results suggest the following interpretation: a basic
Graphplan architecture is, as is now well-known, not com-
petitive with more recent technologies on larger problems.
On the other hand, the quality of the plans produced is com-
petitive with those produced by other planners on these do-
mains, including hand-coded planners. We found this par-
ticularly interesting, since, as discussed previously, the al-
gorithm optimises the number of distinct happenings rather
than makespan. It is not clear whether the implication is
that these domains yield good correlation between numbers
of happenings and makespans, or whether the results of the
other planners are significantly sub-optimal. There clearly
remains considerable work to be done to make this approach
competitive across a wider set of larger problems.

A final and important result is the demonstration that
LPGP can indeed work with actions that have initial effects.
We constructed a domain in which an executive must fix a
fuse in a basement, using matches to provide light to cross
the basement and to fix the fuse. The problem is simple,
but we noted in informal tests that we could not manage to
produce a plan for the domain using LPG (Gerevini & Se-
rina 2002) or MIPS (Edelkamp 2001). VHPOP (Younes &
Simmons 2002) was able to work with actions of this kind,
producing equivalent plans to those constructed by LPGP.
It is interesting to observe that VHPOP uses a partial order
planning strategy as its underlying mechanism and this is
well-suited to adaptation to the initial-and-final effects dura-
tive actions model of PDDL2.1.

Concurrency and Graphplan Mutex
Graphplan has long been associated with the construction of
parallel plans. This suggests that Graphplan embodies some
notion of concurrency. In fact, Graphplan offers concur-
rency not as a central feature of its design but as a by-product
of the reasoning that it encapsulates in the plan graph. The
mutex relationship between actions is less concerned with
the opportunities for concurrency than with the correctness
of the construction and search process. Nevertheless, as the
Graphplan authors observe (Blum & Furst 1995), the paral-
lel activities in a layer can be interpreted as some form of
concurrency. In the transition to temporal planning concur-
rency becomes a far more central concern. It is natural to
speculate on the extent to which the Graphplan mutex plays
a useful role in managing interactions between durative ac-
tions.

Problem LPGP Rank Best quality Planner Time
Quality Time (ms) Plan steps (msec) Avg. Quality

Zeno-1 180 2667 1 5/10 173 TALPlanner 40 177.4
Zeno-2 633 5498 6 7/10 592 TP4/LPG 210/720 618.6
Zeno-3 430 13233 9 6/9 280 TP4/LPG 180/10 416.8
Zeno-4 740 65319 11 5/8 522 LPG 1780 750.6
Zeno-5 583 43830 14 5/9 400 TP4/LPG 26940/640 609.9
Zeno-6 350 57612 12 2/9 323 TP4/LPG 2140/21120 482.3
Drivers-1 91 330 8 =1/9 91 LPG 30 92.5
Satellite-1 41 166 9 1/9 42 TLPlan 10 51.3
Satellite-2 65 24146 13 1/8 70 LPG 20 72.5
Satellite-3 29 62221 13 1/9 34 TP4 310 42.5
Rovers-1 55 303 10 4/9 53 LPG 50 57.2
Rovers-2 44 243 8 =3/9 43 LPG 20 45.1
Rovers-3 58 442 12 5/9 53 LPG 80 69.7
Rovers-4 47 399 8 6/9 45 LPG 60 47.6

Figure 7: Results for problems drawn from the 3rd IPC problem set. Comparison drawn with other systems completing these
problems. In each case we report the actual quality (makespan), time and size of the LPGP plan, the ranking in quality of
the LPGP plan across all the systems completing plans for those problems (including planners using hand-coded rules) and
the best plan produced for the problem. We also report the average quality of plans produced. Planners reporting results on
these problems include IxTeT, TPSYS, TP4, VHPOP, MIPS, LPG, TLPlan, SHOP2 and TALPlanner. In the batches that these
problems are drawn from, IxTeT reported 8 results in total, TPSYS 10, TP4 precisely the 14 problems listed, VHPOP 54, MIPS
57 and the other planners solved all 102. Note: The LPG results for Rovers were generated after the competition.

(:durative-action transmitData

:parameters (?x - transmitter ?d - data)

:duration (= ?duration 3)

:condition (and (at start (calibrated ?x))

(over all (calibrated ?x))

(at start (holding ?d)))

:effect (and (at end (sent ?d))

(at end (not (holding ?d)))

(at end (not (calibrated ?x))))

)

Figure 8: A transmission action.

As we have described, in LPGP the standard Graphplan
mutex is extended to a stronger form, in which even ac-
tions that agree on the deletion or addition of propositions
are considered mutex. We now consider an example which
highlights why this is an appropriate modification. Consider
a durative actiontransmitData which requires that the
transmitter that is being used should be calibrated at the start
and, with an invariant, throughout the transmission, but at
the end of the action the transmitter loses its calibration sta-
tus (see Figure 8). If the executive must transmit two blocks
of data then it is possible, using the standard Graphplan mu-
tex relationship, to construct a plan in which the transmis-
sions are concurrent, provided they end at exactly the same
instant. This is because the delete effects do not then inter-
fere with the invariants. It is counter-intuitive to suppose that
it would be plausible to actually synchronise the activities in
such a way that they ended at precisely the same moment.
The correctness of the plan depends absolutely on the end
points being simultaneous. We propose that a more robust
plan is one in which the transmissions are sequentialised,
recalibrating the transmitter between transmissions. To en-

sure this the two end points must be considered mutex, even
though they agree about the deletion of the same condition.
It is examples such as this that motivate our extension of the
Graphplan mutex relationship.

Conclusions and further work
This paper has described a successful attempt to exploit the
Graphplan architecture to construct temporal plans, but us-
ing a different approach to that used in TGP or TPSys (in
either of its versions (Garrido, Onaindı́a, & Barber 2001;
Garrido, Fox, & Long 2002)). Where those systems use the
graph itself to represent the flow of time, and to solve the
associated constraints on the ways in which the durations of
actions must interlock in a successful plan, we use the graph
to capture only the distinct points of activity and the logi-
cal relationships between them, while handling the duration
constraints in a separate linear constraint solver. This of-
fers the significant benefit of reducing the necessary graph
size during search for most problems. It has the disadvan-
tage that optimisation of temporal duration is then separated
from the optimisation of graph length and this prevents the
planner from claiming temporal-optimality. Despite this, the
results we have managed to produce suggest that the perfor-
mance is, in practice, not significantly harmed by the po-
tential sub-optimality. Nevertheless, we are continuing to
explore possible enhancements of the search to favour better
quality plans.

A benefit of our treatment is that it provides an accurate
representation of the PDDL2.1 semantics, including an ex-
plicit representation of the separations between mutex ac-
tions and the impact that they on the structure of plans as
well as the timing of the actions they include. This is in
marked contrast to the TPSys approach (Garrido, Fox, &
Long 2002), where the problem of separation of action end

points represents a much greater burden. This is because the
end points of actions are assumed to abut (as in TGP), and
then the separation is handled in post-processing.

Although the Graphplan framework offers a convenient
one in which to manage time, it is rather less convenient
for the management of other numeric values. Some work
has explored the introduction of resource management into
a Graphplan framework (Koehler 1998), but it is not easy
to see how to generalise these ideas to handling more com-
plex numeric expressions. In contrast, the heuristic for-
ward state-space search planners have already been shown
to offer some opportunity for extension to handle tempo-
ral planning with numeric expressions (Kambhampati 2001;
Haslum & Geffner 2001; Edelkamp 2001). It remains an op-
portunity for further work to determine whether the Graph-
plan framework can be extended to handle these richer ex-
pressive languages.

Many extensions and modifications to Graphplan
have been explored, including extensions to ADL fea-
tures (Nebel, Dimopoulos, & Koehler 1997), filtering
irrelevancies (Koehleret al. 1997), efficient search be-
yond the fix-point (Long & Fox 1999), exploitation of
symmetry (Fox & Long 1999) and handling sensory
actions (Anderson & Weld 1998). The modifications we
have explored in LPGP seem to be orthogonal to many
of those extensions, since the underlying Graphplan be-
haviour is largely unchanged. It remains for future work
to explore which of these extensions could be successfully
integrated with the mechanisms discussed in this paper. We
have observed that the EBL/DDB modification proposed
in (Kambhampati 1999) cannot be easily integrated with
our extension. The key problem is in constructing a conflict
set at a layer. This is the set of goals that cannot be solved
altogether in a given layer of the graph. In the original
algorithm a goal is identified to “blame” for the failure of
an action being considered as an achiever for a current goal.
This works well when the reason for rejecting an action can
be identified with a mutex relationship between it and some
other action. In the extended algorithm we have described
this is no longer possible: sometimes an action will fail
because it causes a violation of the temporal constraints,
but this does not lead to identification of a single point of
blame in the current layer. In fact, the blame might lie
with a choice that was made long before — the choice of
the end action, coupled with the failing action, as achiever
for a goal in an earlier layer of the search. If the temporal
constraints cannot be solved it is potentially expensive to go
back through them, determining which is the most recent
constraint that could be modified to make the temporal
constraints satisfiable. Furthermore, since we check the
constraints only when a start action is added, the violation
might be the consequence of choices made at a preceding
layer in the search. The safest decision is to treat the entire
collection of goals so far considered at the current layer as
the conflict set. This effectively disables the DDB behaviour
when failure results from violation of temporal constraints,
but we believe this behaviour can be improved.

A critical extension to the PDDL language introduced in
PDDL2.1 is the ability to express plan metrics. Most real

planning problems require solutions to be judged by qual-
ities other than simply the number of steps or even their
temporal makespan. One of the most significant challenges
for the Graphplan architecture, if it is to remain relevant to
future developments of planning, is to find ways to mod-
ify the search to take into account such plan metric infor-
mation. The first step in addressing this challenge is to
find a convincing means by which to combine efficient be-
haviour with, at least heuristically, minimising the temporal
makespan of the plan. Clearly it would be possible to im-
plement an anytime behaviour in which plans continue to
be generated after the first has been found, using the best
plan so far as a bound on the continued search. However,
we are also concerned with achieving a more efficient per-
formance and we are exploring alternative search strategies
as a way to improve the underlying Graphplan search em-
ployed in LPGP.

References
Anderson, C., and Weld, D. 1998. Conditional effects in
Graphplan. InAIPS-98, 44–53.

Berkelaar, M. 2000. Lp-solve. Technical report,
ftp://ftp.es.ele.tue.nl/pub/lpsolve/.

Blum, A., and Furst, M. 1995. Fast Planning through Plan-
graph Analysis. InIJCAI.

Edelkamp, S. 2001. First solutions to PDDL+ planning
problems. InProc. 20th UK Planning and Scheduling SIG.

Fox, M., and Long, D. 1999. The detection and exploita-
tion of symmetry in planning problems. InProceedings
of the International Joint Conference on Artificial Intelli-
gence.

Fox, M., and Long, D. 2002. PDDL2.1:
An extension to PDDL for expressing tempo-
ral planning domains. Technical Report Dept.
CS, 20/02, Durham University, UK. Available at
www.dur.ac.uk/d.p.long/competition.html .

Garrido, A.; Fox, M.; and Long, D. 2002. Temporal plan-
ning with PDDL2.1. InProceedings of ECAI’02.

Garrido, A.; Onaind́ıa, E.; and Barber, F. 2001. Time-
optimal planning in temporal problems. InProc. European
Conference on Planning (ECP-01).

Gerevini, A., and Serina, I. 2002. LPG: A planner based
on local search for planning graphs. InProc. of 6th In-
ternational Conference on AI Planning Systems (AIPS’02).
AAAI Press.

Haslum, P., and Geffner, H. 2001. Heuristic planning with
time and resources. InProc. of European Conf. on Plan-
ning, Toledo.

Kambhampati, S. 1999. Improving Graphplan’s search
with EBL and DDB techniques. InProceedings of IJ-
CAI’99.

Kambhampati, S. 2001. Sapa: a domain independent
heuristic metric temporal planner. InProc. of the European
Conference on Planning, Toledo.

Koehler, J.; Nebel, B.; Hoffmann, J.; and Dimopoulos, Y.

1997. Extending planning graphs to an ADL subset. In
ECP-97, 273–285.
Koehler, J. 1998. Planning under resource constraints. In
Proc. of 15th ECAI.
Long, D., and Fox, M. 1999. The efficient implementation
of the plan-graph inSTAN. JAIR10.
Long, D., and Fox, M. 2001. Encoding temporal planning
domans and validating temporal plans. InProc. 20th UK
Planning and Scheduling SIG.
Nebel, B.; Dimopoulos, Y.; and Koehler, J. 1997. Ignoring
irrelevant facts and operators in plan generation. InECP-
97, 338–350.
Penberthy, J., and Weld, D. 1994. Temporal planning with
continuous change. InProc. of the 12th National Confer-
ence on AI.
Smith, D., and Weld, D. 1999. Temporal Graphplan with
mutual exclusion reasoning. InProceedings of IJCAI-99,
Stockholm.
Younes, H., and Simmons, R. 2002. On the role of ground
actions in refinement planning. InProc. 6th International
AIPS Conf., 90–97.

