Reformulation in Planning

Derek Long, Maria Fox and Muna Hamdi

Department of Computer Science
University of Durham, UK
d.p.long@dur.ac.uk maria.fox@dur.ac.uk

Abstract. Reformulation of a problem is intended to make the problem more
amenable to efficient solution. This is equally true in the special case of reformu-
lating a planning problem. This paper considers various ways in which reformu-
lation can be exploited in planning.

1 Introduction

The reformulation of a problem is intended to make the problem more amenable to
efficient solution. While problems can usually be expressed in many ways, it is often the
case that a particular problem-solving strategy is applicable only to problems expressed
in a certain form. In this case, reformulation is the means by which a useful strategy can
be brought to bear on a problem — the problem is reformulated in the canonical form in
which that the particular strategy can be applied. Similar benefits can be obtained when
the original problem expression is already in a form that can be tackled by a strategy,
but reformulation can allow the strategy to be applied more effectively. Both of these
situations can be seen as cases within the scenario depicted in figure 1. The figure
illustrates how reformulation of a problem can allow different elements (or strategies)
within a problem-solving system to be brought to bear on a problem by reformulating
it. The figure illustrates that reformulation of a problem can allow different problem-
solving strategies to be applied to it. A special case is where reformulation can allow
the same strategy to be applied but in a more efficient way. The figure also suggests
an important point: a single problem might require multiple strategies to solve it and
reformulation might change the combination of strategies that can be applied to solving
the problem.

In this paper we consider the role of reformulation in planning, examining several
of the ways in which it has been exploited. We then turn to an important use of refor-
mulation based on our notion of generic types and discuss how this approach can be
used to improve planner performance. We also consider how generic types can be used
to support alternative approaches to reformulation and, finally, discuss how the strat-
egy that we have identified, for applying reformulation to planning, might generalise to
other problems.

2 Reformulation in Planning

Planning problems are no exception to the possibility of benefits from reformulation. If
we consider the problem-solving system in figure 1 to be a loose collection of strate-
gies that might include constraint satisfaction strategies, general planning strategies,

\ \

|

,
| \
| /

[,/
\&ratwy ///// ,, ///
Strategy) S===,

Problem-solving System

\

Fig. 1. Reformulation and redeployment: reformulating a problem can allow different problem-
solving strategies to be deployed to solve it.

SAT-solvers and other, more specialised, problem solvers, then there have already been
several efforts at reformulation of planning problems described in the literature. For
example, Kautz and Selman have considered reformulating planning problems as SAT-
problems in order to apply SAT-solving strategies to them [25]. Van Beek showed how
planning problems can be reformulated as finite-domain constraint satisfaction prob-
lems and a CSP solver applied to solve them [39]. Where van Beek reformulated the
problems by hand, Kambhampati and Binh Do have shown that automatic reformulation
to CSPs is possible [10], allowing automatic redeployment of a planning problem from
a generic planning strategy (such as Graphplan [4] or FF [24]) to a CSP-solver. Again,
Cimatti, Roveri and Traverso have shown that planning problems can be reformulated
as model-checking problems and an OBDD strategy applied to them [6]. All of these
pieces of work have relied on a complete reformulation of planning problems from a
classical action-based planning domain representation into the forms appropriate for
each of the respective general problem-solving strategies (SAT-solving, CSP-solving or
model-checking). This can be seen as the replacement of one “pure” problem-solving
strategy with another.

The benefits of such a wholesale replacement of one generic problem formulation
into another are sometimes rather ambiguous: the objective is often to take advantage of
a well-developed strategy, perhaps one having made recent gains in performance. For
example, the early work on reformulation to SAT-problems took advantage of then re-
cent advances in SAT-solving technology to seek performance gains in planning. How-
ever, planning by SAT-solving has not demonstrated a convincing long-term benefit (no
SAT-solver planning technology has demonstrated challenging performance compared
with the current leading generic purpose-built planning technology such as FF [24],
HSP2 [5] or the more recent LPG [23]). Planning by model-checking has also not
shown convincing performance benefits and the significant number of model-checking
approaches participating in the 2nd International Planning Competition in 2000 has
dropped to there being no examples of pure model-checking in the 3rd (and most
recent) competition although MIPS [12] adopts a hybrid approach which includes a

model-checking component. CSP-solving has been rather more successful as a strategy
for planning by complete reformulation of planning problems, with Sapa [9] showing
some promising performance in the 3rd IPC.

In the context of the competitions, at least, application of reformulation is con-
strained to be via fully automatic reformulation, unless one considers the “hand-coding”
planners (such as TLPlan [3], TALPlanner [27] and SHOP2 [34]), for which domains
are recoded by hand, to be exploiting reformulation. This would be somewhat mislead-
ing, since the recoding of the domains for these planners is not simply to reshape the
domain, but to allow control rules to be added to the encoding that control the search
in the planning systems. Although one can consider the addition of new information as
part of the process of reformulation, it is clearly a far more expensive and knowledge-
intensive task if this is intended and the subsequent benefits in problem-solving perfor-
mance are therefore bought at a significant price in the reformulation efforts. Consid-
ered as a complete approach to solving planning problems there remains controversy
in the community about the extent to which planning by “reformulating” through the
addition of knowledge-intensive control information represents a generally acceptable
tradeoff between reformulation effort and performance gains.

2.1 Reformulation and Expressiveness

One benefit that reformulation can offer is the ability to tackle problems expressed in
an enriched formalism, where the formalism can express problems that extend beyond
the capabilities of existing solving strategies. For example, Gazen and Knoblock [21]
collected, completed and formalised common techniques for conversion of various ele-
ments of the expressive power of the ADL [36] extensions of planning domain descrip-
tions into the simpler STRIPS subset. This reformulation allows the simpler STRIPS
planning strategies to tackle problems expressed in the richer language. The greater ex-
pressive power of the ADL extension can be seen in the cost of the reformulation, which
can be exponential in the size of the problem encoding in certain cases. Thus, the ex-
tra expressive power allows an exponential compression relative to a STRIPS encoding
and can therefore lead to exponentially worse performance from a STRIPS planning
strategy that the size of the original ADL encoding might suggest should be expected.
A more practical reformulation is applied in IPP [26] to handle ADL expressive power
more effectively. In that system the use of conditional effects, responsible for the most
common exponential blow-up in the encodings of problems in the scheme proposed
by Gazen and Knoblock, is handled by an extension to a STRIPS planning strategy,
leaving the remaining elements of ADL to be reformulated into simpler forms. The
gain is that the treatment of conditional effects in IPP can often be managed efficiently,
while the Gazen and Knoblock approach will always cause combinatorial growth in
domain encodings. A similar approach is taken in SGP [2] and in the more recent FF.
Nebel has shown how the relative expressive power of these language extensions can be
compared more formally, precisely by a reformulation technique, in [35]. In that work,
Nebel considers the effect of reformulation of the original problem in such a way that a
solution to the reformulated problem allows recovery of a solution to the original prob-
lem. This is, in fact, a common technique when applying reformulation approaches to
problem-solving: a problem is reformulated and solved, if all goes as expected, more

efficiently, and then the solution to the original problem is extracted from the solution
to the reformulated problem.

Another example of the same approach is in Fox and Long’s work on temporal
planning in the system LPGP [17]. In that system, planning problems in which there are
durative actions, which are actions with duration that can have conditions and effects at-
tached to both their start and end points and invariant conditions attached to the duration
of their activity, are reformulated as collections of simple non-durative actions. These
actions, together with some important linking constraints, allow a relatively straightfor-
ward extension of a non-temporal Graphplan planning strategy to handle much more
expressive temporal planning problems.

A reformulation of this kind could, in principle, also be used to tackle the use of
numeric valued expressions within planning domains. Since a finite plan can only ever
introduce finitely many new numeric values, which it is possible to identify by a finite
reachability analysis (such as a plan-graph construction), a propositional planning strat-
egy can be used to tackle problems involving numbers using a continual reformulation
as the strategy considers longer and longer possible solutions in its search for a plan.
Whether such a strategy could be useful in practice would depend on the number of
numeric values introduced during reachability analysis.

Occasionally reformulation can be used to to exploit a more powerful solver more
effectively, where a problem has been expressed using a simpler expressive power that
the solver can exploit. A simple example is that in which the domain analysis system,
TIM [13], can be used to infer types in an untyped planning domain description, en-
riching the domain description and allowing a system that can exploit type information
to improve its performance accordingly. Another example is the use of TIM to identify
symmetries in a planning domain [14, 16], reformulating a problem in order to allow
exploitation of symmetry elimination in the planning machinery. TIM and another fully
automatic system, DISCOPLAN [22], both support reformulation of planning prob-
lems by the addition of mutex information and other constraints that can be exploited
by planning systems.

3 Reformulation of Planning Problems for Deployment of
Multiple Problem-Solving Strategies

The majority of the work described so far is directed at the reformulation of a plan-
ning problem into a form that can be tackled by a complete problem-solving strategy.
Although this is obviously an important role for reformulation, it is also possible, as
figure 1 suggests, to reformulate a problem in order to exploit multiple problem-solving
strategies. An hypothesis that has driven an important line of research is that generic
problem-solving strategies are unlikely to be the most efficient tools with which to
tackle specific sub-problems that commonly arise as a part of larger problems. For ex-
ample, the general search approaches that underlie many planning and CSP solving
systems are not ideally suited to tackling problems that involve finding efficient routes
for agents moving around while executing a plan. Much more effective is a tool that
can exploit the fact that the problem involves finding shortest paths, possibly including

paths that visit specific locations in sequence, or as an unordered collection, and can
use a problem-solving strategy that is tailored to that problem.

Several researchers have identified the benefits of specialised treatments of prob-
lems that arise naturally as an element of planning problems, particularly scheduling
and resource handling [11, 28, 38, 15]. In almost all of these systems the planning prob-
lem is reformulated by hand in order to allow the planner to identify the separation of the
sub-problem or sub-problems from the remainder of the planning problem. The whole
problem can the be deployed across multiple solvers, including, possibly, a generic
planning strategy to be applied to the core of the planning problem left once the sub-
problems have been separated. The separation of a hard problem (NP-hard or worse)
from a planning problem offers far more hope for handling it effectively than attempting
to use general planning technology. It is unlikely in the extreme that a general planning
strategy can prove a powerful heuristic approach to managing, for example, combi-
natorial resource management problems, Travelling-Salesman-variant route planning
problems, Job-Shop-Scheduling-variant resource allocation problems and so on. In Ix-
TeT [28] resources are handled by reformulating planning problems to make explicit
the resource-producing and resource-consuming actions and then by using a resource-
constraint manager to handle the constraints on the resources used within developing
solutions. Similarly, resource profiling is used in OPlan [11]. In RealPlan [38] the prob-
lem of scheduling transporters to cargoes is handled by a separate scheduler. In all of
these systems the communication between sub-solvers (resource manager, profiler or
scheduler) and the rest of the planning system is a sophisticated technical problem.

In [15] Fox and Long describe Hybrid STAN, a planning system in which a special
purpose strategy for addressing route-planning sub-problems is integrated with a gen-
eral planning system. This system is based on automatic reformulation of a planning
problem from a standard action-based formulation into one in which the sub-problems
are identified and linked to the remainder of the problem using specialised expressions
associated with actions that rely on conditions established within the fragment of the
planning problem that is identified as a sub-problem. In [15] the need for a more gen-
eral form of interface between the planner and its sub-solvers is indicated, allowing the
communication of constraints between all the processes participating in the solution of
a diversely structured problem. In this paper we outline some of the progress we have
made towards the development of such an interface. We describe the notion of active
precondition — a general means by which information can be communicated between
a planner and one or more sub-solvers. Active preconditions represent an expressive
form that can be exploited in the reformulation of a planning problem from a pure
action-based model into one that makes explicit the relationships between those actions
and sub-problems within a planning problem. We proceed to discuss this process of
reformulation. We then demonstrate the use of active preconditions in the integration
of STAN with two specialised solvers: one for planning the routes to be followed by
mobile objects committed to visiting various locations in a plan, and one for allocat-
ing drivers to these mobiles. The domains we use for demonstrating the power of our
integrated system feature mobiles that must be driven (in contrast to mobiles that are
self-propelled, such as those in the Logistics domain).

3.1 Automatic Reformulation of Planning Problemsthrough Generic Types

The automatic reformulation of planning problems rests on a well-established line of
research that developed from the TIM system [13]. The development introduced the
notion of a generic type [29] (the developments and the relationship to the original
system can be seen in more detail in [32]).

A type, in a planning domain, is a set of objects that can all be used to instantiate
the same subset of arguments of action schemas within the domain (although not all of
the instantiated actions will necessarily be applicable, because of unsatisfied precondi-
tions). Thus, types in planning domains are actually based on a functional commonality
between objects within a single domain. In contrast, generic types are collections of
types, characterised by specific kinds of behaviours, examples of which appear in many
different planning domains. Thus, generic types are defined across domains, rather than
within single domains. For example, domains often feature transportation behaviours
since they often involve the movement of self-propelled or portable objects between lo-
cations. In the context of recognising transportation domains TIM can identify mobile
objects, even when they occur implicitly, the operations by which they move and the
maps of connected locations on which they move, the drivers (if appropriate) on which
their mobility depends, any objects they can carry, together with their associated |oad-
ing and unloading operations. The analysis automatically determines whether the maps
on which the mobiles move are static (for example, road networks) or dynamic (for ex-
ample, corridors with lockable doors). The recognition of transportation features within
a domain suggests the likelihood of route-planning sub-problems arising in planning
problems within the domain.

In addition to mobility-related generic types, other generic types have been identi-
fied and characterised. A generic type has been identified for construction behaviours [7].
Construction problems are commonly associated with iterative behaviour, suggesting
the presence in the domain of types with inductive structure (analogous to lists and
trees) associated with well-defined inductive operations. Recognition of these features
supports an abstract level of reasoning about the domain. Generic types representing
certain kinds of resources which restrict the use of particular actions in a domain have
also been characterised [30]. The presence of these features suggest that processor and
resource allocation sub-problems might arise and might be related to combinatorial sub-
problems such as Multi-processor Scheduling or Bin Packing. TIM is able to recognise
the existence, in a domain, of finite renewable resources which can be consumed and
released in units [31].

Transformation by action A

Predicate in property P relates objects
of type M to objects of type L.

Fig. 2. A simple generic type fingerprint: the mobile type.

The analysis performed by TIM takes as input a standard STRIPS or, following re-
cent extensions [8], an ADL description of a domain and problem. Some experiments
have also been conducted with domains using numbers [18]. It should be emphasised
that the analysis is automatic: no annotations are required to identify special behaviours
and the analysis is completely independent of the syntactic labels used to describe the
objects and operations. As a consequence, the analysis can recognise generic behaviours
in domains which do not obviously fall into the categories indicated by the names of
the generic types. This allows automatic reformulation of problems where a human
domain-engineer might not identify the possibility. Recognition is based on the dis-
covery of patterns within the structure of a domain encoding that can be described as
fingerprints denoting the occurrence of specific behaviours amongst objects within the
domain. The fingerprints are described in terms of relationships between finite-state
machines that are extracted by TIM from a domain description and which show how
objects in a domain make state transitions as actions are applied to them. For example,
figure 2 represents the simplest pattern, indicating the existence of mobile objects. Fig-
ure 3 is an example of a more sophisticated pattern, this one identifying the existence
of objects that display a particular constrained resource behaviour corresponding to a
Multi-Processor Scheduling problem. In the figure the type P is the processor type and
a processor object must be allocated to a task (type T") instance before that task can
execute (moving from stage to stage). An example of a domain encoding that displays
this behaviour (in its most explicit form) is given in figure 4.

Although the recognition of different generic types is still carried out using ad hoc
analysis techniques, based around the core TIM analysis, work is in progress towards
the unification of these techniques based on a single matching strategy and a common
framework for the description of generic types and relationships between them.

Once generic types have been identified in a domain, the planning problem can
be reformulated in terms of sub-problems. A sub-problem is defined to contain the
following components:

— A collection of objects capable of a specific behaviour (eg: trucks are capable of
mobility);

— A collection of predicates capturing this behaviour (eg: at captures locatedness, in
captures portability, free captures ability to be allocated to a task, etc).

— A collection of operators that affect these predicates (eg: drive affects at, load af-
fects in, allocate affects free, etc).

TIM identifies the relevant objects, predicates and operators in a given domain. For
example, figure 5 shows a particular encoding of the Multi-Processor Scheduling sub-
problem, associated with the generic type of processable task (type 7" in figure 3). In this
example there are three different types of objects participating in the sub-problem, and
predicates associated with each of the three types. These predicates are the critical ones
for solving the MPS problem. The collection of operators contains operators responsible
for changing the states of the objects with respect to these key predicates.

The reformulation of the planning problem links sub-problem structures to actions
by a process of abstraction. Abstraction of a recognised sub-problem from the planning
domain involves the removal from the domain description of the sub-problem operators
and the modification of all remaining operators to remove reference to the sub-problem

[y

a b wN

v ’
\ , \
N s

\ L execute
L7 TypeT

N
D

: A type, P, contains a state defined by a predicate that links to a single instance of a type, T.
The T instance acquires the corresponding property as an attribute.

: The type, T, has a second property space, defining state-transition behaviour.

: The attribute of T is an enabling condition for the transition, execute, in the second space for T.

: The state for T is a property that links T to instances of another type, S.

: The elements of P can enter the state in which they are related to elements of T by either a
simple loop (reallocate) or by a transition (release) to a second state (free) and a transition back
(allocate).

Fig. 3. The fingerprint of the generic type of driver objects.

(:action execute
:parameters (?p ?j ?s ?t)
:precondition (and (running ?p ?j) (stage ?j ?s) (nextto ?s ?t))
:effect (and (stage ?j ?t) (not (stage ?j 7s))))

(:action swap-to
:parameters (?p ?j)
:precondition (and (idle ?p) (job ?j))
:effect (and (running ?p ?j) (not (idle ?p))))

(zaction swap-from
:parameters (?p ?j)
:precondition (and (running ?p ?j))
:effect (and (idle ?p) (not (running ?p ?j))))

Fig. 4. Canonical Multi-Processor Scheduling as a Planning Domain.

MPS Sub-problem

Objects: tasks, stages, processors
Predicates: free, allocated, priocessed
Operators. allocate, de—allocate, re—allocate, process

Fig. 5. An encoding of the MPS Sub-problem

predicates. In this way, all references to the sub-problem are removed from the plan-
ning domain description, leaving a core problem for the planner to solve. In [15] is
described a simple form of integration between a forward planner and a route-planning
sub-solver. This integration is based on passing information from the planner to the sub-
solver about the current and required locations of mobiles that are required to move.
The interface mediating the interaction between the planner and sub-solvers described
in that work has now been generalised into a more powerful form of interface called an
active precondition.
We begin by defining the structure of an object specification:

Definition 1 An Object Specification, OS;, associated with an object in a planning
problem, ¢, is a triple containing the following components:

1. The current state of ¢. This is initialised from the initial state and is updated every
time ¢ changes its state;

2. The final state of ¢, taken from the goal specification. If ¢ has no state specified in
the goal destination this field is null.

3. The generic structure of ¢. This defines what kinds of generic behaviours ¢ supports.

The state of an object is the collection of properties that refer to that object in the
current state of the world. Typically, the state of an object can be partitioned into col-
lections of propositions that identify the state of the object relative to one or other of
the generic behaviours the object supports. For example, a mobile object will support
movement between locations and the current location is its state relative to this be-
haviour.

Definition 2 An Active Precondition, AP,, with respect to a set of objects os, is a triple
containing the following components:

1. A proposition, P, involving os;
2. The object specifications, for each o € 0s, OS,;
3. The identity of the sub-solver that is responsible for satisfying P.

The active precondition is a data structure that couples the original precondition of
an action to the objects that are involved in the proposition and the sub-solver that can
bring about the necessary condition. Often the objects that appear in a proposition are
not all equally significant. For example, if the proposition is that a certain task must
reach a particular stage then the task is the more important object since it is the task
that must be processed in order to reach a particular stage. The precise significance of
each object in an active precondition depends on the way that the sub-solver manages
the process of achieving the corresponding proposition.

If we consider a planning problem that includes an instance of the generic type of
processable tasks, then we can see that the object specification for a task will include the
information indicating what stage the task is currently at, what stage it is to reach and
whether it currently has a processor allocated to it or not. An object specification is a
data structure that encapsulates the representation of the state associated with the object.
The advantage of this is that, having identified a particular instance of a generic type
to which the object belongs, we can select a representation for the object specification

that makes it more efficient to access the corresponding properties of the object. In the
case of the task, we can store its current stage, its goal stage and whether or not there is
a processor allocated to it in an internal form that is much more easily modified as the
task is processed than a simple set of propositions would be.

Figure 6 shows how this abstraction is achieved with a task argument to a packing
action. It can be seen that each action that has a precondition that is to be solved by
a sub-solver will acquire a collection of active preconditions to replace them, along
with the remaining standard preconditions. Each active precondition is responsible for
handling only one proposition, but an action can have many active preconditions.

(:action pack
:parameters (?t ?¢ ?s)
:precondition (and (at-stage ?t ?s) | Original operator

(packable ?s)
(unpacked ?t)
(empty ?c))
:effect (and (not (unpacked ?t))
(packed ?t)
(not (empty c))
(contains 7 ?2t)))

e

(:action pack Abstracted operator
:parameters (?t 2c ?s)
:precondition (and

(packable ?s)
(unpacked ?t)

Active precondition
Condition: (at-stage ?t ?s)

(empty 2c)) Objects: ?t - task ?s — stage
:effect (and (not (unpacked ?2t)) Subsolver: MPS solver
(packed ?t)
(not (empty ?c))

(contains ?c ?t)))

Fig. 6. The abstraction process for a packing operator. The at-stage precondition for the task ¢ is
replaced with an active precondition.

In addition to replacing the preconditions with active preconditions in this way, the
abstraction process will remove the action responsible for the generic movement be-
haviour associated with the mobile type. In certain cases the process of asbtraction can
leave a null domain description (this happens in the canonical MPS problem encoded
as a planning problem [30], where there is no other structure than that of the MPS sub-
problem), but in general there remain components of the original problem that have to
be solved by the planner. Active preconditions form one component of the mechanisms
by which sub-solvers communicate. The way in which they are currently exploited is
described in the next section.

3.2 Exploitation of Generic Types

In order to exploit the reformulation, our planning system is driven by a forward plan-
ning system that attempts to solve the remaining planning problem (if there is one),

using a relaxed-plan heuristic in much the same way as FF [24]. As relaxed plans are
constructed in order to evaluate alternative state transitions these relaxed plans create
agendas, formed from the active preconditions of actions selected in the relaxed plan.
The agendas are then examined by sub-solvers to identify the goals that have been
posed that fall under the remit of each of the sub-solvers. The sub-solvers then com-
municate to the forward planner an estimate of the cost of achieving the corresponding
goals within the sub-problem for which they are responsible. Using this enriched goal
distance estimate the forward planner selects the best transition by which to progress.

If the action selected contains an active precondition then the corresponding sub-
solver is given a new task: to construct an actual plan fragment which will achieve the
necessary precondition from the current state prior to insertion of the newly selected
action. The abstraction process ensures that all of the materials required by the sub-
solver in order to achieve this are under the control of the sub-solver, so that the goal
can be achieved. This process ensures efficient solution of the sub-problem and can
utilise global state information about the progress of the solution in order to ensure that
resources are sensibly deployed — for example, the MPS solver can ensure that loads
are balanced between processors in order to achieve an efficient solution.

There are complications in this linkage that we have not space to address properly
in this paper. An initial report of some of the progress we have made in handling the
difficulties that arise when sub-problems are interdependent can be found in [19]. In
particular, we have identified the relationships that can exist between sub-solvers and
their respective responsibilities and can automatically build a dependency network that
allows these relationships to be identified. Armed with this information it is possible
to decompose the agenda constructed by a planner so that sub-solvers examine it in
an order that allows sub-solvers to impose further goals for subsequent sub-solvers to
achieve. There remain several significant challenges to resolve in order to make this
approach fully general.

To give a broad idea of what can be achieved using the reformulation into sub-
problems we present one data set. Data demonstrating performance in other problem
sets can be found in, for example, [15,7,19]. The current data set shows performance
on a collection of randomly generated MPS problems.

In this test we compared IPP [26], BlackBox [25], FF [24] and STAN on CMPS
instances involving increasing numbers of processors and tasks. We were interested
in comparing both time taken to solve the instances and makespan of the solutions.
All experiments were performed on a Celeron 333 Intel processor and a machine with
256Kb of RAM, 256Kb swap space. The larger problems defeated FF primarily in the
instantiation phase. It should be noted that the reformulation being carried out by TIM
in these problems includes the addition of type information which is only impicit in
the encodings. The instantiation by FF is improved if type information is explict, but
even with this information FF cannot solve the largest half-dozen problems on this ma-
chine. The quality of the plans produced by FF is consistently poor, with all tasks being
allocated to a single processor until late in the sequence when one or two alternative
processors are sometimes used. This is only to be expected, since FF generates plans
that IPP and BlackBox both found the optimal parallel plan for the smallest instance
but had insufficient memory to solve any further instances. BlackBox attempts first to

Procs|Tasks| IPP Blackbox FF STAN4 |Diff| Sub
Secs Span| Secs Span| Secs Span| Secs Span Opt?

2 5 (328 11 |12.72 11| .01 19 |.006 11 | O

2 | 10 1 72].008 38 |1

2 | 20 .87 233|.066 118| O

3 |10 149 64 |.088 25| 1

3 |20 183 211|.064 79 | 1

3 | 30 8.92 477(.073 170 1

4 | 20 53.07 215|.017 59 | 1

4 | 30 09 1282 | 1

4 | 40 121 190 2

4 | 50 141 358 3 | 1

10 | 50 206 145|10| 2

10 | 80 .560 300| 3

10 | 100 954 548 2

15 | 50 132 97 | 6 | 2

15 | 100 98 366 4

15 | 150 2.48 806 | 4

20 | 50 153 72| 3

20 | 80 .504 150 10

20 | 100 894 275| 5

20 | 150 2.498 606 | 3

Fig. 7. Results for MPS domain instances. Instances were randomly generated.

use a GraphPlan strategy and only switches to SAT-solving if this has failed to make
progress when a fixed time cut-off is reached. The first instance was small enough to be
solved before the cut-off so BlackBox used its Graphplan strategy in this case.

STAN is able to solve all of the instances without any search at all. When TIM
has identified the MPS nature of the problem a heuristic strategy is invoked to solve
the sub-problem. The first-fit decreasing heuristic produces very good quality solutions.
The Diff column in the table shows the difference in load between the lightest and heav-
iest loaded processors. As can be seen, the difference is generally very small indicating
that all processors are being allocated an approximately average load. The final col-
umn shows the extent to which STAN’s solutions seem likely to deviate from optimal.
By inspection of the proposed allocation it can be determined whether it is, in princi-
ple, possible to rearrange the loads to result in a shortened makespan. Whether this is
actually possible or not cannot easily be determined (we would need to search for an
alternative solution or compare our solutions with ones generated by alternative heuris-
tics or approximation schemes). Only four of the solutions were possibly non-optimal
and these only by very small margins.

4 Generic Typesand Reformulation

So far we have discussed the use of generic types in their role as a foundation for
automatic reformulation of planning problems, based on automatic recognition of fin-

gerprints within action-based models. A more recent direction of work is exploring the
use of generic types as planning domain design patterns, analogous to the software en-
gineering notion of design pattern [20]. Defining a design pattern in his seminal work,
Alexander, credited with invention of design patterns, states [1] that:

Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem in
such a way that you can use this solution a million times over without ever
doing it the same way twice. Christopher Alexander

Generic types capture precisely this generality and the fingerprints define, in a planning-
domain pattern language, the necessary components and relationships between them.
The characterisations provided in figures 2 and 3 have a similar status to the design pat-
terns of programs and can play a similar role: to support the construction of planning
domain descriptions using well-understood structural components that capture common
behaviours. Seen in this light, the automatic recognition of generic types is an attempt to
recognise and capture design patterns in use within a planning domain. The exploitation
of generic types as planning domain design patterns is at an early stage and we perceive
there to be opportunities in domain engineering as well as in supporting efficient plan-
ning. Some early work illustrating the use of generic types in a domain engineering role
can be found in [37].

The construction of planning domains in terms of generic types ab initio offers
some important opportunities for reformulation. All of the techniques for abstraction of
sub-problems can, of course, be used to reformulate problems in the ways already de-
scribed, but in addition it is possible to use the existence of generic types to reformulate
problems in canonical structures, or to add control information that is associated with
the existence of generic types within a problem allowing automatic reformulation for
planning systems that currently rely on hand-coded control rules [33].

5 Conclusions

Reformulation has played and continues to play a vital role in planning. In this paper we
have concentrated on a particular strategy for the application of reformulation, based on
the observation that planning problems typically contain sub-problems that have been
tackled as research problems in their own right and for which efficient heuristic solvers
have been developed that will inevitably out-perform generic planning technology. This
approach is still at an early stage of development, but we have demonstrated that it is
both possible and effective.

Planning is not alone in being faced with a wide variety of problems that are of-
ten composed of combinations of structured sub-problems. Reformulation in order to
redeploy problem solving across multiple sub-solvers, each specialising in the solution
of one kind of sub-problem, would appear to be a strategy that can be applied across a
much broader spectrum of combinatorial problem solving. Indeed, it seems likely that
even the notion of a generic type is more general than to be applicable to planning prob-
lems alone, and its application to other areas of automatic reasoning could be a fruitful
way in which to extend the power of reformulation across the whole field.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, and S. Angel. A
Pattern Language. Oxford University Press, 1977.

C.R. Anderson, D.E. Smith, and D.S. Weld. Conditional effects in Graphplan. In Proc. of
4th International Conference on Al Planning Systems, 1998.

F. Bacchus and F. Kabanza. Using temporal logic to express search control knowledge for
planning. Artificial Intelligence, 116(1-2):123-191, 2000.

A. Blum and M. Furst. Fast Planning through Plan-graph Analysis. In Proc. of 14th Inter-
nation Joint Conference on Al, pages 1636-1642. Morgan Kaufmann, 1995.

B. Bonet and H. Geffner. Planning as heuristic search: new results. In Proc. of 4th European
Conference on Planning (ECP). Springer-Verlag, 1997.

A. Cimatti, M. Roveri, and P. Trverso. Strong planning in non-deterministic domains via
model-checking. In Proc. of 4th International Conference on Al Planning and Scheduling
(AIPS’00), 2000.

M. Clark. Construction domains: a generic type solved. In Proceedings of 20th Workshop of
UK Planning and Scheduling Special Interest Group, 2001.

S. Cresswell, M. Fox, and D. Long. Extending TIM domain analysis to handle ADL con-
structs. In L. McCluskey, editor, Knowledge Engineering Tools and Techniques for Al Plan-
ning: AIPS’02 Workshop, 2002.

M.B. Do and S. Kambhampati. Sapa: a domain-independent heuristic metric temporal plan-
ner. In Proc. ECP-01, 2001.

Minh Binh Do and S. Kambhampati. Solving planning graph by compiling it into a CSP. In
Proc. of 5th Conference on Al Planning Systems, pages 82-91. AAAI Press, 2000.

B. Drabble and A. Tate. The use of optimistic and pessimistic resource profiles to inform
search in an activity based planner. In Proc. of 2nd Conference on Al Planning Systems
(AIPS). AAAI Press, 1994.

S. Edelkamp. Mixed propositional and numeric planning in the model checking integrated
planning system. In M. Fox and A. Coddington, editors, Planning for Temporal Domains:
AIPS’02 Workshop, 2002.

M. Fox and D. Long. The automatic inference of state invariants in TiM. Journal of Al
Research, 9:367-421, 1998.

M. Fox and D. Long. The detection and exploitation of symmetry in planning problems. In
Proc. of 16th Internation Joint Conference on Al, pages 956-961. Morgan Kaufmann, 1999.
M. Fox and D. Long. Hybrid STAN: Identifying and Managing Combinatorial Sub-problems
in Planning. In Proc. of 17th International Joint Conference on Al, pages 445-452. Morgan
Kaufmann, 2001.

M. Fox and D. Long. Extending the exploitation of symmetries in planning. In Proc. of 6th
International Conference on Al Planning Systems (AIPS’02). AAAI Press, 2002.

M. Fox and D. Long. Fast temporal planning in a Graphplan framework. In M. Fox and
A. Coddington, editors, Planning for Temporal Domains: AIPS’02 Workshop, 2002.

M. Fox, D. Long, S. Bradley, and J. McKinna. Using model checking for pre-planning
analysis. In AAAI Spring Symposium Series: Model-based Validation of Intelligence. AAAI
Press, 2001.

M. Fox, D. Long, and M. Hamdi. Handling multiple sub-problems within a planning domain.
In Proc. of 20th Workshop of UK Planning and Scheduling Special Interest Group, 2001.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of reusable
software. Addison-Wesley, 1995.

B.C. Gazen and C. Knoblock. Combining the expressiveness of UCPOP with the efficiency
of Graphplan. In Proc. of 4th European Conference on Planning (ECP’97), 1997.

22

23.

24.

25.

26.

217.

28.

29.

30.

3L

32.

33.

34.

35.

36.

37.

38.

39.

A. Gerevini and L. Schubert. Accelerating Partial Order Planners: Some Techniques for
Effective Search Control and Pruning. Journal of Al Research, 5:95-137, 1996.

A. Gerevini and I. Serina. LPG: A planner based on local search for planning graphs. In
Proc. of 6th International Conference on Al Planning Systems (AIPS’02). AAAI Press, 2002.
J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation through heuristic
search. Journal of Al Research, 14:253-302, 2000.

H. Kautz and B. Selman. Unifying SAT-based and graph-based planning. In Proc. of 14th
Internation Joint Conference on Al, pages 318-325. Morgan Kaufmann, 1995.

J. Koehler, B. Nebel, J. Hoffmann, and Y. Dimopoulos. Extending planning graphs to an
ADL subset. In Proc. of 4th European Conference on Planning, Toulouse, pages 273-285,
1997.

J. Kvarnstrom and P. Doherty. TALplanner: A temporal logic based forward chaining plan-
ner. Annals of Mathematics and Artificial Intelligence, 30(1-4):119-169, 2000.

P. Laborie and M. Ghallab. Planning with sharable resource constraints. In Proc. of 14th
International Joint Conference on Al. Morgan Kaufmann, 1995.

D. Long and M. Fox. Automatic synthesis and use of generic types in planning. In Proc.
of 5th Conference on Artificial Intelligence Planning Systems (AIPS), pages 196-205. AAAI
Press, 2000.

D. Long and M. Fox. Multi-processor scheduling problems in planning. In Proc. of ICAI’01,
Las Vegas, 2001.

D. Long, M. Fox, L. Sebastia, and A. Coddington. An examination of resources in planning.
In Proc. of 19th UK Planning and Scheduling Workshop, Milton Keynes, 2000.

D. Long and M.Fox. Planning with generic types. Technical report, Invited talk at IJCAI’01
(forthcoming Morgan-Kaufmann publication), 2001.

L. Murray. Reuse of control knowledge in planning domains. In L. McCluskey, editor,
Knowledge Engineering Tools and Techniques for Al Planning: AIPS’02 Workshop, 2002.
D. Nau, Y. Cao, A. Lotem, and H. Mufioz-Avila. SHOP: Simple hierarchical orederd planner.
In Proceedings of the International Joint Conference on Artificial Intelligence, 1999.

B. Nebel. On the compilability and expressive power of propositional planning formalisms.
Journal of Al Research, 12:271-315, 2000.

E. Pednault. ADL: Exploring the middle ground between STRIPS and the situation calculus.
In Proc. of 1st International Conference on Principles of Knowledge Representation and
Reasoning, pages 324-332. San Francisco, CA, Morgan Kaufmann, 1989.

R. Simpson, L. McCluskey, D. Long, and M. Fox. Generic types as design patterns for
planning domain specification. In L. McCluskey, editor, Knowledge Engineering Tools and
Techniques for Al Planning: AIPS’02 Workshop, 2002.

B. Srivastava. RealPlan: Decoupling causal and resource reasoning in planning. In Proc. of
17th National Conference on Al, pages 812-818. AAAI/MIT Press, 2000.

P. van Beek and X. Chen. CPlan: A constraint programming approach to planning. In Proc.
of 16th National Conference on Artificial Intelligence, pages 585-590. AAAI/MIT Press,
1999.

