Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Global error estimation with adaptive explicit Runge-Kutta methods

Calvo, M.C. and Higham, D.J. and Montijano, J.M. and Rández, L. (1996) Global error estimation with adaptive explicit Runge-Kutta methods. IMA Journal of Numerical Analysis, 16 (1). pp. 47-63. ISSN 0272-4979

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Users of locally-adaptive software for initial value ordinary differential equations are likely to be concerned with global errors. At the cost of extra computation, global error estimation is possible. Zadunaisky's method and 'solving for the error estimate' are two techniques that have been successfully incorporated into Runge-Kutta algorithms. The standard error analysis for these techniques, however, does not take account of the stepsize selection mechanism. In this paper, some new results are presented which, under suitable assumptions show that these techniques are asymptotically valid when used with an adaptive, variable stepsize algorithm - the global error estimate reproduces the leading term of the global error in the limit as the error tolerance tends to zero. The analysis is also applied to Richardson extrapolation (step halving). Numerical results are provided for the technique of solving for the error estimate with several Runge-Kutta methods of Dormand, Lockyer, McGorrigan and Prince.