Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Momentum exchange between light and a single atom: Abraham or Minkowski?

Hinds, E.A. and Barnett, S.M. (2009) Momentum exchange between light and a single atom: Abraham or Minkowski? Physical Review Letters, 102 (5). 050403-1-050403-4. ISSN 0031-9007

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We consider forces on an atom due to a plane-wave light pulse. The standard view of the optical dipole force indicates that red-detuned light should attract the atom towards high intensity. While the atom is inside the pulse, this would increase the average momentum per photon from p(0) to p(0)n, where n is the average refractive index due to the presence of the atom. We show, however, that this is the wrong conclusion and that the dispersive forces repel the atom from the light in this particular case, giving the photons a momentum p(0)/n. This leads us to identify Abraham's optical momentum with the kinetic momentum transfer. The form due to Minkowski is similarly associated with the canonical momentum. We consider the possibility of demonstrating this in the laboratory, and we note an unexpected connection with the Aharonov-Casher effect.