Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Control of the spatial emission structure of broad-area vertical-cavity surface-emitting lasers by feedback

Schulz-Ruhtenberg, M. and Tanguy, Y. and Huang, K.F. and Jager, R. and Ackemann, T. (2009) Control of the spatial emission structure of broad-area vertical-cavity surface-emitting lasers by feedback. Journal of Physics D: Applied Physics, 42 (5). ISSN 0022-3727

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The wave number of transverse spatial structures in broad-area vertical-cavity surface-emitting lasers (VCSELs) is controlled via frequency-selective feedback from an external self-imaging cavity in a broad range of wave numbers and emission frequencies. The selected states follow the dispersion curves of the free-running laser. A control range of about 2.5 µm−1 in spatial frequency space and 2.5 nm in emission wavelength was obtained for square VCSELs and of about 3 µm−1 and 8 nm for circular VCSELs having a different dispersion curve. By spatial filtering in Fourier space, the shape of the structures can also be controlled to some extent. It is argued that the feedback techniques are useful to 'probe' emission states of the free-running laser.