Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

MEMS microwave device with switchable capacitive and inductive states

Li, L. and Uttamchandani, D.G. (2008) MEMS microwave device with switchable capacitive and inductive states. Micro and Nano Letters, 3 (3). pp. 77-81. ISSN 1750-0443

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A microwave microelectromechanical system (MEMS) device that can be switched between capacitive and inductive states over the frequency range of 1 to 16 GHz is reported. The device has been designed based on coplanar waveguide architecture, and realised in thickly electroplated nickel with front-side bulk micromachining of the substrate using a commercial foundry process. The capacitive-to-inductive switchover has been achieved by changing the gap of the interdigitated comb fingers using a chevron microactuator. Experimental characterisation of the device has been conducted, and capacitances ~0.2 pF in the frequency range of 1-16 GHz have been measured in the 'off' state (driving voltage of the microactuator is 0 V), whereas inductances ~0.5 nH in the frequency range of 1-16 GHz have been measured in the 'on' state (driving voltage of the microactuator is ~1 V).