Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Compensation of network voltage unbalance using doubly fed induction generator-based wind farms

Wang, Yi and Xu, L. and Williams, B.W. (2009) Compensation of network voltage unbalance using doubly fed induction generator-based wind farms. IET Renewable Power Generation, 3 (1). pp. 12-22. ISSN 1752-1416

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A control strategy for compensating AC network voltage unbalance using doubly fed induction generator (DFIG)-based wind farms is presented. A complete DFIG dynamic model containing both the rotor and grid side converters is used to accurately describe the average and ripple components of active/reactive power, electromagnetic torque and DC bus voltage, under unbalanced conditions. The principle of using DFIG systems to compensate grid voltage unbalance by injecting negative sequence current into the AC system is described. The injected negative sequence current can be provided by either the grid side or the rotor side converters. Various methods for coordinating these two converters are discussed and their respective impacts on power and torque oscillations are described. The validity of the proposed control strategy is demonstrated by simulations on a 30 MW DFIG-based wind farm using Matlab/Simulink during 2 and 4% voltage unbalances. The proposed compensation strategy can not only ensure reliable operation of the wind generators by restricting torque, DC link voltage and power oscillations, but also enable DFIG-based wind farms to contribute to rebalancing the connected network.