Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Radiochromic film imaging spectroscopy of laser-accelerated proton beams

Nurnberg, F. and Schollmeier, M. and Brambrink, E. and Blazevic, A. and Carroll, D.C. and Flippo, K. and Gautier, D.C. and Geissel, M. and McKenna, P. (2009) Radiochromic film imaging spectroscopy of laser-accelerated proton beams. Review of Scientific Instruments, 80 (3). 033301. ISSN 0034-6748

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This article reports on an experimental method to fully reconstruct laser-accelerated proton beam parameters called radiochromic film imaging spectroscopy (RIS). RIS allows for the characterization of proton beams concerning real and virtual source size, envelope- and microdivergence, normalized transverse emittance, phase space, and proton spectrum. This technique requires particular targets and a high resolution proton detector. Therefore thin gold foils with a microgrooved rear side were manufactured and characterized. Calibrated GafChromic radiochromic film (RCF) types MD-55, HS, and HD-810 in stack configuration were used as spatial and energy resolved film detectors. The principle of the RCF imaging spectroscopy was demonstrated at four different laser systems. This can be a method to characterize a laser system with respect to its proton-acceleration capability. In addition, an algorithm to calculate the spatial and energy resolved proton distribution has been developed and tested to get a better idea of laser-accelerated proton beams and their energy deposition with respect to further applications.