Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Isotope shifts of 6s5d(3)d-6s6p(1)p(1) transitions in neutral barium

Dammalapati, U. and De, S. and Jungmann, K. and Willmann, L. (2009) Isotope shifts of 6s5d(3)d-6s6p(1)p(1) transitions in neutral barium. European Physical Journal D: Atomic, Molecular, Optical and Plasma Physics, 53 (1). pp. 1-8. ISSN 1434-6060

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

First laser spectroscopic measurements of the 6s5d(3)D(1)-6s6p(1)P(1) and 6s5d(3)D(2)-6s6p(1)P(1) transitions in several isotopes of atomic barium have been performed. The hyperfine structure of these transitions was optically resolved and isotope shifts for even and odd isotopes were determined. The isotope shifts show a deviation from their expected behavior for odd isotopes in an analysis based on King-plots. This observation puts atomic structure calculations at test because available theories do not predict this. A profound understanding of the wavefunctions for heavy alkaline earth systems like barium (Ba) and radium (Ra) is essential for a theoretical evaluation of their sensitivity to fundamental symmetry breaking effects such as they could be observed, e.g., through permanent electric dipole moments. Further the absolute frequency of the 6s(2) S-1(0)-6s6p(3)P(1) intercombination line in Ba-138 was determined to be 12 636.6232(1) cm(-1).