Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Bis[(trimethylsilyl)methyl]manganese: structural variations of its solvent-free and tmeda-, pyridine-, and dioxane-complexed forms

Alberola, A. and Blair, V.L. and Carrella, L.M. and Clegg, W. and Kennedy, A.R. and Klett, J. and Mulvey, R.E. and Newton, S. (2009) Bis[(trimethylsilyl)methyl]manganese: structural variations of its solvent-free and tmeda-, pyridine-, and dioxane-complexed forms. Organometallics, 28 (7). pp. 2112-2118. ISSN 0276-7333

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

First synthesized in 1976 and recently taking on a new significance as a key precursor to heterobimetallic alkali-metal-manganese(II) complexes, bis[(trimethylsilyl)methyl] manganese has been structurally characterized by X-ray crystallography. It forms a polymeric chain structure of formula [{Mn(CH2SiMe3)(2)}(infinity)], 1, in which distorted tetrahedral, spiro Mn atoms are linked together via mu(2)-bonding alkyl ligands. The structure is notable for displaying two distinct categories of Mn-C bond lengths with a mean size differential of 0.225 angstrom and for being the first fully crystallographically characterized polymeric manganese(II) dialkyl compound. Magnetic measurements of 1 indicate a surprisingly strong spin exchange coupling of J approximate to -45 cm(-1) between the manganese ions aligned along the chain. Four Lewis base complexes of bis[(trimethyl silyl)methyl] manganese have also been subjected to X-ray crystallographic studies. Previously known [TMEDA center dot Mn(CH2SiMe3)(2)], 2, and [(pyridine)(2)Mn(CH2SiMe3)(2)], 3, both adopt a simple monomeric arrangement with C2N2 distorted tetrahedral coordinations of the metal atom. Synthesized by direct addition of the Lewis base to 1, two further, new complexes, [{(dioxane)-[Mn(CH2SiMe3)(2)](2)}(infinity)], 4, and [{(dioxane)[Mn(CH2SiMe3)(2)]}(infinity)], 5, are also reported. Hemisolvate 4 displays dimeric [(Me3SiCH2)Mn(mu-CH2SiMe3)(2)Mn(CH2SiMe3)] subunits, whereas 1:1 solvate 5 consists of monomeric subunits of [{Mn(CH2SiMe3)(2)}(infinity)]; in both cases these subunits are linked together via O(CH2CH2)(2)O bridges to generate one-dimensional polymers.