Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Long-term spatiotemporal dynamics of solid-state lasers and vertical-cavity surface-emitting lasers

Oppo, G.L. and Yao, Alison and Prati, F. and de Valcarcel, G.J. (2009) Long-term spatiotemporal dynamics of solid-state lasers and vertical-cavity surface-emitting lasers. Physical Review A, 79 (3). 033824. ISSN 1094-1622

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The number of Maxwell-Bloch equations describing the spatiotemporal evolution of solid-state and semiconductor-based lasers can be reduced when the temporal scales of the fields and atomic variables are very different. We demonstrate the existence of slow (center) manifolds for models of solid-state lasers (such as Nd:YAG) and vertical-cavity surface-emitting lasers and determine reduced equations in the presence of both diffraction and carrier diffusion. Two separate methods of obtaining the reduced equations are presented. Excellent agreement between the reduced models and the original equations is obtained when the slow manifolds are expanded in a perturbative series. Since stiffness is removed, the computational time for the long-term spatiotemporal dynamics of these devices can be strongly reduced, typically by 2 orders of magnitude.