Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Non-normality effects in a discretised, nonlinear, reaction-convection-diffusion equation

Higham, D.J. and Owren, B. (1996) Non-normality effects in a discretised, nonlinear, reaction-convection-diffusion equation. Journal of Computational Physics, 124 (2). pp. 309-323. ISSN 0021-9991

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

What is the long-time effect of adding convention to a discretised reaction-diffusion equation? For linear problems, it is well known that convection may denormalise the process, and, in particular, eigenvalue-based stability predictions may be overoptimistic. This work deals with a related issue - with a nonlinear reaction term, the nonnormality can greatly influence the long-time dynamics. For a nonlinear model problem with Dirichlet boundary conditions, it is shown that the basin of attraction of the 'correct' steady state can be shrunk in a directionally biased manner. A normwise analysis provides lower bounds on the basin of attraction and a more revealing picture is provided by pseudo-eigenvalues. In extreme cases, the computed solution can converge to a spurious, bounded, steady state that exists only in finite precision arithmetic. The impact of convection on the existence and stability of spurious, periodic solutions is also quantified.