Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

A new synthesis of alkene-containing minor-groove binders and essential hydrogen bonding in binding to DNA and in antibacterial activity

Anthony, N.G. and Breen, D. and Donoghue, G. and Khalaf, A.I. and Mackay, S.P. and Parkinson, J.A. and Suckling, C.J. (2009) A new synthesis of alkene-containing minor-groove binders and essential hydrogen bonding in binding to DNA and in antibacterial activity. Organic and Biomolecular Chemistry, 7 (9). pp. 1843-1850. ISSN 1477-0520

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A practical synthesis of alkene-containing minor-groove binders for DNA, related to distamycin, with potential for wide structural diversity is described, based upon the Wittig chemistry of N-alkylpyrrole aldehydes. The compounds prepared have been evaluated for binding to DNA by physical methods (melting temperature and NMR) and for their antibacterial activity. Significantly, it was found that alkenes linking the aryl head group of the minor-groove binder promote strong binding to DNA and high antibacterial activity against Gram-positive bacteria. Conversely, a minor-groove binder containing an alkene located towards the alkylamino tail group has a low affinity for DNA and does not show antibacterial activity. These observations suggest an important role for specific hydrogen bonds in the binding of compounds of this type to DNA, and in their antibacterial activity.