Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Extreme-ultraviolet spectroscopy of Fe VI-Fe XV and its diagnostic application for electron beam ion trap plasmas

Liang, G.Y. and Baumann, T.M. and Lopez-Urrutia, J.R.C. and Epp, S.W. and Tawara, H. and Gonchar, A. and Mokler, P.H. and Zhao, G. (2009) Extreme-ultraviolet spectroscopy of Fe VI-Fe XV and its diagnostic application for electron beam ion trap plasmas. Astrophysical Journal, 696 (2). pp. 2275-2289. ISSN 0004-637X

Full text not available in this repository. (Request a copy from the Strathclyde author)


Extreme-ultraviolet spectra of intermediately ionized iron ions (Fe VI-Fe XIV) in the wavelength range of 125.0-265.0 Å have been measured at the Heidelberg electron beam ion trap. Emission spectra were recorded sequentially while varying the electron energy over the range of 75-544 eV in steps of 5 eV. The observed spectra clearly show the evolution of each ionic stage as a function of the electron energy, allowing to distinguish the emission lines from neighboring ion charge species and helping to disentangle possible line blends. The collisional-radiative modeling satisfactorily reproduces the measurement. A comparison with previous astrophysical observations (Sun) reveals that some weak emissions may originate from Fe VI and Fe VII, resulting in incorrect assignment of transition lines. The calculated polarization effects due to nonthermal (monoenergetic) electrons are found to be negligible for most of the emission lines at low-energy electron impact, except for a few lines whose polarization can be over 20%. By line ratio technique, the effective electron density in the trap was estimated to be 7.1+2.4 -3.0 × 109-3.4+0.5 -0.5 × 1010 cm-3, slightly depending on the ion charge state.