Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

The dynamics of high-frequency DC RSQUID oscillators

Pegrum, C.M. (2009) The dynamics of high-frequency DC RSQUID oscillators. Superconductor Science and Technology, 22 (6). 064004. ISSN 0953-2048

Full text not available in this repository. (Request a copy from the Strathclyde author)


Josephson circuit simulation software has been used to study the properties of a range of two-junction DC RSQUIDs configured as current-controlled heterodyne oscillators. We find that, if the loop inductance is small, their current-voltage curves are modified substantially due to self-induced Shapiro steps. When the heterodyne frequency is comparable with the Josephson frequency of the junctions the step amplitude becomes very large and additional features are seen, including sub-harmonic steps and step tails. We point out that conventional DC RSQUIDs generally have too large a loop inductance for some of these effects to be seen in the I-V curves, and we suggest that nanofabrication techniques could be used to make novel low-inductance RSQUIDs. We have also demonstrated that by applying a sinusoidally varying RF flux to a DC RSQUID it is possible to phase-modulate the heterodyne oscillation, which could have useful practical applications.