Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Understanding organic nitrates - a vein hope?

Miller, Mark R. and Wadsworth, R.M. (2009) Understanding organic nitrates - a vein hope? British Journal of Pharmacology, 157 (4). pp. 565-567. ISSN 1476-5381

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The organic nitrate drugs, such as glyceryl trinitrate (GTN; nitroglycerin), are clinically effective in angina because of their dilator profile in veins and arteries. The exact mechanism of intracellular delivery of nitric oxide (NO), or another NO-containing species, from these compounds is not understood. However, mitochondrial aldehyde dehydrogenase (mtALDH) has recently been identified as an organic nitrate bioactivation enzyme. Nitrate tolerance, the loss of effect of organic nitrates over time, is caused by reduced bioactivation and/or generation of NO-scavenging oxygen-free radicals. In a recent issue of the British Journal of Pharmacology, Wenzl et al. show that guinea-pigs, deficient in ascorbate, also have impaired responsiveness to GTN, but nitrate tolerance was not due to ascorbate deficiency that exhibited divergent changes in mtALDH activity. Thus, the complex function of mtALDH appears to be the key to activation of GTN, the active NO species formed and the induction of tolerance that can limit clinical effectiveness of organic nitrate drugs.