Picture of scraped petri dish

Scrape below the surface of Strathprints...

Explore world class Open Access research by researchers at the University of Strathclyde, a leading technological university.

Explore

Novel "anchor modification" of polymeric biomaterial surfaces by the utilization of cyclodextrin inclusion complex supramolecules

Zhao, X.B. and Courtney, J.M. (2009) Novel "anchor modification" of polymeric biomaterial surfaces by the utilization of cyclodextrin inclusion complex supramolecules. Journal of Biomedical Materials Research Part A, 90A (1). pp. 282-291. ISSN 1549-3296

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

In this article, a novel approach for the surface modification of polymeric biomaterials by the utilization of supramolecules was studied. The supramolecules selected were cyclodextrin inclusion complexes (CICs). The biomaterial selected for surface modification was plasticized poly (vinyl chloride) (PVC-P). Results indicate that when the CICs were blended into PVC-P, they tend to migrate and anchor on the surface to achieve a remarkable protein-resistant surface, with improved blood compatibility. In comparison with a physical mixture of cyclodextrins and a guest molecule, such as poly(ethylene oxide) (PEO)-poly(propylene oxide) (PPO)-PEO and PPO-PEO-PPO for PVC-P modification, CICs modified PVC-P are more consistent in processing and achieve reproducible surface characteristics. Based on this study, a novel anchor modification was proposed regarding CICs modified surface. This anchor modification is likely to reduce plasticizer extraction from PVC-P and also can be utilized for the modification of polymers other than PVC-P.