Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Explicit polynomial preserving trace liftings on a triangle

Ainsworth, M. and Demkowicz, L. (2009) Explicit polynomial preserving trace liftings on a triangle. Mathematische Nachrichten, 282 (5). pp. 640-658. ISSN 0025-584X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We give an explicit formula for a right inverse of the trace operator from the Sobolev space H1(T) on a triangle T to the trace space H1/2(T) on the boundary. The lifting preserves polynomials in the sense that if the boundary data are piecewise polynomial of degree N, then the lifting is a polynomial of total degree at most N and the lifting is shown to be uniformly stable independently of the polynomial order. Moreover, the same operator is shown to provide a uniformly stable lifting from L2(T) to H1/2(T). Finally, the lifting is used to construct a uniformly bounded right inverse for the normal trace operator from the space H(div; T) to H-1/2(T) which also preserves polynomials. Applications to the analysis of high order numerical methods for partial differential equations are indicated.