Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Explicit polynomial preserving trace liftings on a triangle

Ainsworth, M. and Demkowicz, L. (2009) Explicit polynomial preserving trace liftings on a triangle. Mathematische Nachrichten, 282 (5). pp. 640-658. ISSN 0025-584X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We give an explicit formula for a right inverse of the trace operator from the Sobolev space H1(T) on a triangle T to the trace space H1/2(T) on the boundary. The lifting preserves polynomials in the sense that if the boundary data are piecewise polynomial of degree N, then the lifting is a polynomial of total degree at most N and the lifting is shown to be uniformly stable independently of the polynomial order. Moreover, the same operator is shown to provide a uniformly stable lifting from L2(T) to H1/2(T). Finally, the lifting is used to construct a uniformly bounded right inverse for the normal trace operator from the space H(div; T) to H-1/2(T) which also preserves polynomials. Applications to the analysis of high order numerical methods for partial differential equations are indicated.