Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Laser-driven ultrafast field propagation on solid surfaces

Quinn, K. and Wilson, P.A. and Cecchetti, C.A. and Ramakrishna, B. and Romagnani, L. and Sarri, G. and Lancia, L. and Fuchs, J. and Gallegos, P. and Carroll, D.C. and Quinn, M.N. and Yuan, X.H. and McKenna, P. (2009) Laser-driven ultrafast field propagation on solid surfaces. Physical Review Letters, 102 (19). 194801-1-194801-4. ISSN 0031-9007

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The interaction of a 3×1019  W/cm2 laser pulse with a metallic wire has been investigated using proton radiography. The pulse is observed to drive the propagation of a highly transient field along the wire at the speed of light. Within a temporal window of 20 ps, the current driven by this field rises to its peak magnitude ∼104  A before decaying to below measurable levels. Supported by particle-in-cell simulation results and simple theoretical reasoning, the transient field measured is interpreted as a charge-neutralizing disturbance propagated away from the interaction region as a result of the permanent loss of a small fraction of the laser-accelerated hot electron population to vacuum.